Las agrociencias como soporte a una producción agropecuaria sostenible. Liliana Chacón Jaramillo

Чтение книги онлайн.

Читать онлайн книгу Las agrociencias como soporte a una producción agropecuaria sostenible - Liliana Chacón Jaramillo страница 7

Las agrociencias como soporte a una producción agropecuaria sostenible - Liliana Chacón Jaramillo Cuadernos de Seminario

Скачать книгу

la ex-refinería “18 de Marzo”, Ciudad de México. Revista Internacional de Contaminación Ambiental, 30(2), 201-211.

      Garzón, J. M., Rodríguez-Miranda, J. C. y Hernández-Gómez, C. H. (2017). Aporte de la biorremediación para solucionar problemas de contaminación y su relación con el desarrollo sostenible. Universidad y Salud, 19(2), 309-318.

      Gavrilescu, M. (2005). Fate of pesticides in the environment and its bioremediation. Engineering in Life Sciences, 5(6), 497-526.

      Gómez, S., Gutiérrez, D., Hernández, A., Hernández, C., Losada, M. y Mantilla, P. (2008). Factores bióticos y abióticos que condicionan la biorremediación por Pseudomonas en suelos contaminados por hidrocarburos. NOVA, 6(9), 76-84.

      Govarthanan, M., Fuzisawa, S., Hosogai, T. y Chang, Y. C. (2017). Biodegradation of aliphatic and aromatic hydrocarbons using the filamentous fungus Penicillium sp. CHY-2 and characterization of its manganese peroxidase activity. RSC Advances, 7, 20716-20723.

      Gruver, J. B. (2013). Prediction, prevention and remediation of soil degradation by water erosion. Nature Education Knowledge, 4(12), 2.

      Guo, K., Liu, Y. F., Zeng, C., Chen, Y. Y. y Wei, X. J. (2014). Global research on soil contamination from 1999 to 2012: a bibliometric analysis. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 64(5), 377-391.

      Hassan, I. (2014). Ability of some soil fungi in biodegradation of petroleum hydrocarbon. Journal of Applied & Environmental Microbiology, 2(2), 46-52.

      Hernández, E., Gutiérrez, M. C., Rubiños, J. y Alvarado, J. (2006). Caracterización del suelo y plantas de un sitio contaminado con hidrocarburos. TERRA Latinoamericana, 24(4), 463-470.

      Islas-García, A., Vega-Loyo, L., Aguilar-López, R., Xoconostle-Cázares, B. y Rodríguez-Vázquez, R. (2015). Evaluation of hydrocarbons and organochlorine pesticides and their tolerant microorganisms from an agricultural soil to define its bioremediation feasibility. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 50(2), 99-108.

      Juhasz, A. L., Stanley, G. A. y Britz, M. L. (2000). Degradation of high molecular weight PAHs in contaminated soil by a bacterial consortium: Effect on microtox and mutagenicity bioassays. Bioremediation Journal, 4(4), 271-283.

      Julca-Otiniano, A., Meneses-Florián, L., Blas-Sevillano, R. y Bello-Amez, S. (2006). La materia orgánica, importancia y experiencias de su uso en la agricultura. IDESIA, 24, 49-61.

      Kumar, S., Kaushik, G., Dar, M. A., Nimesh, S., López-Chuken, U. J. y Villarreal-Chiu, J. F. (2018). Microbial degradation of organophosphate pesticides: a review. Pedosphere, 28(2), 190-208.

      Lovecka, P., Pacovska, I., Stursa, P., Vrchotova, B., Kochankova L. y Demnerova, K. (2015). Organochlorinated pesticide degrading microorganisms isolated from contaminated soil. New Biotechnology, 32(1), 26-31.

      Magulova, K. y Priceputu, A. (2016). Global monitoring plan for persistent organic pollutants (POPs) under the Stockholm Convention: triggering, streamlining and catalyzing global POPs monitoring. Environmental Pollution, 217, 82-84.

      Maroto, M. E. y Rogel, J. M. (2001). Aplicación de sistemas de biorremediación de suelos y aguas contaminadas por hidrocarburos. En A. Maroto, E. Quesada y R. Quesada, Sistemas de biorremediación de suelos y aguas contaminadas por hidrocarburos (pp. 297-305). Geocisa. http://aguas.igme.es/igme/publica/con_recu_acuiferos/028.pdf

      Martínez-Álvarez, L. M., Ruberto, L. A. M., Lo-Balbo, A. y Mac-Cormack, W. P. (2017). Bioremediation of hydrocarbon-contaminated soils in cold regions: development of a pre-optimized biostimulation biopile-scale field assay in Antarctica, Science of The Total Environment, 590-591, 194-203.

      Molina-Barahona, L., Rodríguez-Vázquez, R., Hernández-Velasco, M., Vega-Jarquín, C., Zapata-Pérez, O., Mendoza-Cantú, O. y Albores, A. (2004). Diesel removal from contaminated soils by biostimulation and supplementation with crop residues. Applied Soil Ecology, 27(2), 165-175.

      Mrozik, A. y Piotrowska-Seget, Z. (2010). Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research, 165, 363-375.

      Mulligan, C. N. y Yong, R. N. (2004). Natural attenuation of contaminated soils. Environment International, 30(4), 587-601.

      NOM-138-Semarnat/SSA1-2012 del 2013 (10 de septiembre), por la cual se expide la norma oficial mexicana sobre Límites máximos permisibles de hidrocarburos en suelos y las especificaciones para su caracterización y remediación. Diario Oficial. https://www.profepa.gob.mx/innovaportal/file/6646/1/nom-138-semarnat.ssa1-2012.pdf

      Nueva Ley DOF del 2005 (18 de marzo), por medio de la cual se expide la Ley de Bioseguridad de Organismos Genéticamente Modificados. Cámara de Diputados del H. Congreso de la Unión. https://www.conacyt.gob.mx/cibiogem/images/cibiogem/normatividad/vigente/LBOGM.pdf

      Parque Bicentenario Ciudad de México (s. f.). https://parquebicentenario.com.mx/

      Pepper, I. L., Gentry, T. J., Newby, D. T., Roane, T. M. y Josephson, K. L. (2002). The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. Environmental Health Perspectives, 110, 943-946.

      Purnomo, A. S., Mori, T., Kamei, I. y Kondo R. (2011). Basic studies and applications on bioremediation of DDT: a review. International Biodeterioration & Biodegradation, 65, 921-930.

      Rahman, K., Banat, I., Thahira, J., Thayumanavan, T. y Lakshmanaperumalsamy, P. (2001). Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresource Technology, 81(1), 25-32.

      Richmond, N. T. (2015). Chemical soil degradation as a result of contamination: a review. Journal of Soil Science and Environmental Management, 6(11), 301-308.

      Rockne, K. y Reddy, K. (2003, octubre). Bioremediation of contaminated sites [ponencia]. International e-Conference on Modern Trends in Foundation Engineering: Geotechnical Challenges and Solutions, Indian Institute of Technology, Madras, India. https://krockne.people.uic.edu/proceeding9.pdf#search=”biore%20mediation%20of%20pesticides%20and%%2020herbicides”

      Rodríguez-Eugenio, N., McLaughlin, M. y Pennock, D. (2018). Soil pollution: a hidden reality. FAO.

      Saghee, M. R. y Bidlan, R. (2018). Simultaneous degradation of organochlorine pesticides by microbial consortium. Bioscience Biotechnology Research Communications, 11(1), 49-54.

      Saha, J. K., Selladurai, R., Coumar, M. V., Dotaniya, M. L., Kundu, S. y Patra, A. K. (2017). Soil pollution - An emerging threat to agriculture. Environmental chemistry for a sustainable world, vol. 10. Springer Nature Singapore. https://link.springer.com/book/10.1007/978-981-10-4274-4

      Sales da Silva, I. G., Gomes de Almeida, F. C., Padilha da Rocha e Silva, N. M., Casazza, A. A., Converti, A. y Asfora Sarubbo, L. (2020). Soil bioremediation: overview of technologies and trends. Energies, 13(18), 4664. https://doi.org/10.3390/en13184664

Скачать книгу