Сети города. Люди. Технологии. Власти. Коллектив авторов

Чтение книги онлайн.

Читать онлайн книгу Сети города. Люди. Технологии. Власти - Коллектив авторов страница 18

Сети города. Люди. Технологии. Власти - Коллектив авторов Studia Urbanica

Скачать книгу

как операторы мобильной связи (местоположение, использование приложений), сайтами о путешествиях и гостиницах (отзывы), социальными медиа (мнения, фотографии, персональная информация, местоположение), поставщиками транспортных услуг (маршруты, пассажиропотоки), владельцами сайтов (история действий пользователей), финансовыми учреждениями и сетями розничной торговли (покупки), частными системами наблюдения и охранными предприятиями (местоположение, поведение), которые все чаще продают или отдают в лизинг свои данные, используя дата-брокеров, или открывают свои данные при помощи API (как в случае с Twitter или Foursquare). Большие данные также генерируются с помощью краудсорсинга (в таких проектах, например, как Open Street Map) и проектов гражданской науки (например, при помощи персональных метеостанций), когда люди общими усилиями создают информационный ресурс или собирают данные, будучи волонтерами. Другие виды данных, собираемые менее систематически, включают цифровую аэрофотосъемку с самолетов или беспилотных устройств, географическую видеосъемку, использование технологии LiDAR (световое обнаружение и ранжирование), тепловые и другие способы электромагнитного сканирования местности, позволяющие создавать 2D- и 3D-карты в реальном времени. И если официальной статистике в основном еще только предстоит пережить информационную революцию[113], то использование онлайн-транзакций электронного правительства (e-government), в которых цифровые данные производятся в момент завершения операции, уже изменило способы сбора данных, практикуемые городскими администрациями.

      Мы находимся на пороге новой эры больших данных, когда объем и разнообразие информации о городе будут только возрастать. Более того, если сейчас значительная часть этих данных находится в хранилищах, их сложно интегрировать и увязать между собой из‐за различий в используемых стандартах и форматах, впоследствии они будут все больше объединяться в централизованные системы, такие как межведомственные диспетчерские (inter-agency control rooms), осуществляющие мониторинг города как единого целого. Например, такой диспетчерской города является Centro de Operações Prefeitura do Rio de Janeiro (Рио-де-Жанейро, Бразилия) – основанный на данных центр управления, в штате которого 180 сотрудников. В эту диспетчерскую в режиме реального времени собирается информация от 30 ведомств, включающая данные о дорожном движении и системе общественного транспорта, данные от муниципальных и коммунальных служб, служб безопасности и экстренной помощи, сведения о погоде, информация, производимая служащими и горожанами с помощью социальных медиа, а также административные и статистические данные. Другим примером могут служить так называемые городские операционные системы, такие как CityNext от Microsoft, Smarter City от IBM, City Operating System от Urbiotica и Urban Operating System от PlanIT. Фактически они представляют собой разработанные для координирования и контроля деятельности крупных компаний системы планирования ресурсов бизнес-предприятий (ERP), перепрофилированные для нужд города. По мере распространения движения за открытость данных какая-то часть этой информации будет поступать

Скачать книгу


<p>113</p>

Kitchin R. The opportunities, challenges and risks of big data for official statistics // Statistical Journal of the International Association of Official Statistics. 2015. Vol. 31. № 3. P. 471–481.