Energia solar térmica. Pedro Rufes Martínez
Чтение книги онлайн.
Читать онлайн книгу Energia solar térmica - Pedro Rufes Martínez страница 6
Yacimientos de alta temperatura (figura 1.5). Existen únicamente en las zonas activas de la corteza. Un yacimiento de estas características está formado por una fuente de calor magmático, una roca permeable que almacena el fluido a alta temperatura (entre 150 y 350 °C) y una capa superior formada por rocas impermeables. Normalmente esta capa superior impermeable no es perfecta, por lo que el fluido se escapa a través de grietas dando lugar a géiseres, fumarolas, fuentes termales, etc. El agua caliente o el vapor se utilizan para accionar turbinas de vapor y producir electricidad (centrales geotérmicas). En afloramientos naturales, el agua y los gases calientes se utilizan directamente para producir agua caliente para usos residenciales, industriales o agrícolas.
Yacimientos de media temperatura. El fluido está a temperaturas menos elevadas, normalmente entre 100 y 150 °C. Se puede producir electricidad mediante el uso de ciclos binarios, que hoy en día presentan todavía rendimientos termodinámicos muy bajos. La mejor forma de aprovechar este calor es en sistemas de calefacción y/o refrigeración (máquinas de absorción).
Figura 1.5. Yacimiento de alta temperatura.
Yacimientos de baja temperatura. Se encuentran en zonas estables de la corteza, es decir con flujos de calor normales. La única condición geológica requerida en estos casos es la existencia, a la profundidad adecuada (entre 1.500 y 2.500 m), de materiales geológicos permeables capaces de contener y dejar circular fluidos que extraigan el calor a la roca. Existe, no obstante, una segunda condición no geológica, sino económica. Debido al bajo nivel térmico del fluido (entre 60 y 100 °C), éste ha de ser utilizado en aplicaciones directas del calor (producción de agua caliente para usos residenciales, industriales o agrícolas), lo que requiere la existencia en las proximidades del yacimiento de una demanda energética suficiente.
Yacimientos de muy baja temperatura. Cuando la temperatura del fluido es muy baja (entre 20 y 30 °C), éste puede utilizarse para producir agua caliente sanitaria y en sistemas de climatización mediante bomba de calor.
1.2.4 Energía hidráulica
Se obtiene del aprovechamiento de la energía potencial gravitatoria asociada a los saltos de agua y a los cursos de los ríos. Es considerada como una energía limpia cuando su impacto ambiental es bajo y aprovecha la energía del agua sin necesidad de presas; en caso contrario se considera sólo como una energía renovable. Su origen se halla en el ciclo del agua: el Sol evapora el agua de los lagos, mares y ríos, cae en forma de lluvia y nieve sobre la superficie y retorna al mar, reiniciándose el ciclo.
Las centrales hidroeléctricas aprovechan los saltos de agua para accionar unas turbinas que a su vez mueven un generador eléctrico (figura 1.6). Pueden clasificarse en función de su potencia o tamaño,
Microcentrales: son aquellas centrales cuya potencia es inferior a 1 MW.
Minicentrales o centrales minihidráulicas: centrales con potencias inferiores a los 10 MW. Incluyen a las anteriores.
Centrales hidráulicas de mediana potencia: centrales con potencias comprendidas entre 10 y 50 MW.
Centrales hidráulicas de gran potencia: centrales con potencias superiores a los 50 MW.
Las centrales minihidráulicas tienen un ordenamiento administrativo y económico específico, distinto al de las centrales hidroeléctricas de mayor potencia.
La energía hidráulica es renovable, puesto que la fuente primaria no se agota al explotarla, y también es limpia, ya que su explotación no produce sustancias contaminantes de ningún tipo. Sin embargo, el impacto ambiental causado por las grandes presas puede ser alto: inundación de grandes áreas de terreno, movimientos migratorios de la población que ocupaba las zonas inundadas, pérdida de biodiversidad, pandemias y aumento de la salinidad de los cauces fluviales, entre otros. Desde el punto de vista del impacto ambiental, las centrales minihidráulicas son las más respetuosas con el medio ambiente. Por este motivo, aunque en la UE se considera toda la energía hidráulica como renovable, en España sólo se concede este calificativo a las centrales minihidráulicas.
Figura 1.6. Esquema de una central hidráulica a pie de presa.
1.2.5 Energía de las mareas
Esta energía, también denominada mareomotriz, es debida a las fuerzas gravitatorias entre la Luna, la Tierra y el Sol, que originan las mareas. Éstas se producen a consecuencia de la diferencia de altura media de los mares, según la posición relativa entre estos tres astros. Esta diferencia de alturas puede ser aprovechada en determinados puntos del planeta (golfos, bahías o estuarios) por medio de turbinas hidráulicas que se interponen en el movimiento natural de las aguas (figura 1.7). Mediante el acoplamiento de la turbina a un alternador se puede generar electricidad.
La energía mareomotriz tiene la cualidad de ser renovable en tanto que la fuente de energía primaria no se agota por su explotación, y es limpia, porque no se producen subproductos contaminantes durante la fase de explotación. Sin embargo, el impacto ambiental que causan es alto, lo que impide la proliferación de este tipo de energía.
Figura 1.7. Central eléctrica mareomotriz ubicada en el estuario del río Rance.
El mar y los océanos también proporcionan otros tipos de energía: la energía del oleaje y la energía maremotérmica.
1.2.6 Energía del oleaje
Es la energía producida por el movimiento de las olas, también denominada undimotriz. Las olas se forman por la acción del viento; cuando el viento sopla con mucha intensidad, las olas alcanzan un gran tamaño y corren sobre la superficie marina a gran velocidad. El oleaje transporta gran cantidad de energía, que va cediendo a medida que interacciona con el fondo cuando las profundidades son reducidas, y en la costa, donde finalmente rompe. La energía del oleaje puede aprovecharse para generar electricidad (figuras 1.8 y 1.9).
Figura 1.8. Principio de funcnamiento de una central eléctrica undimotriz.
Figura 1.9. La serpiente marina o Pelamis es otro tipo de central undimotriz
1.2.7 Energía maremotérmica
La energía maremotérmica OTEC (Ocean Thermal Energy Conversion), basada en el gradiente térmico oceánico, consiste en convertir en energía útil el gradiente térmico que existente entre las aguas superficiales y las profundas. Para poder a provecher la energía maremotérmica es necesario que el gradiente térmico sea de 20 °C como mínimo. Este gradiente térmico oceánico puede utilizarse para producir electricidad (figura 1.10). El agua caliente de la capa superior oceánica