Biomolecular Engineering Solutions for Renewable Specialty Chemicals. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Biomolecular Engineering Solutions for Renewable Specialty Chemicals - Группа авторов страница 34
17 Brunati, M., Marinelli, F., Bertolini, C., Gandolfi, R., Daffonchio, D., & Molinari, F. (2004). Biotransformations of cinnamic and ferulic acid with actinomycetes. Enzyme and Microbial Technology, 34, 3–9.
18 Bythrow, J. D. (2005). Vanilla as a medicinal plant. In Seminars in Integrative Medicine 3, 129–131. WB Saunders.
19 del Carmen Martínez‐Cuesta, M., Payne, J., Hanniffy, S. B., Gasson, M. J., & Narbad, A. (2005). Functional analysis of the vanillin pathway in a vdh‐negative mutant strain of Pseudomonas fluorescens AN103. Enzyme and Microbial Technology, 37, 131–138.
20 Chakraborty, D., Gupta, G., & Kaur, B. (2016). Metabolic engineering of E. coli top 10 for production of vanillin through FA catabolic pathway and bioprocess optimization using RSM. Protein Expression and Purification, 128, 123–133.
21 Chattopadhyay, P., Banerjee, G., & Sen, S. K. (2018). Cleaner production of vanillin through biotransformation of ferulic acid esters from agroresidue by Streptomyces sannanensis. Journal of Cleaner Production, 182, 272–279.
22 Converti, A., Aliakbarian, B., Domínguez, J. M., Vázquez, G. B., & Perego, P. (2010). Microbial production of biovanillin. Brazilian Journal of Microbiology, 41, 519–530.
23 Dal Bello, E. (2013). Vanillin production from ferulic acid with Pseudomonas fluorescens BF13‐1p4. PhD thesis, pp.1–128.
24 Das, H., & Singh, S. K. (2004). Useful byproducts from cellulosic wastes of agriculture and food industrya critical appraisal. Critical Reviews in Food Science and Nutrition, 44(2), 77–89.
25 Deep, A., Chaudhary, U., & Gupta, V. (2011). Quorum sensing and bacterial pathogenicity: from molecules to disease. Journal Lab Physicians, 3, 4–11.
26 Deters, M., Knochenwefel, H., Lindhorst, D., Koal, T., Meyer, H. H., Hänsel, W., … & Kaever, V. (2008). Different curcuminoids inhibit T‐lymphocyte proliferation independently of their radical scavenging activities. Pharmaceutical Research, 25(8), 1822–1827.
27 Di Gioia, D., Sciubba, L., Setti, L., Luziatelli, F., Ruzzi, M., Zanichelli, D., & Fava, F. (2007). Production of biovanillin from wheat bran. Enzyme and Microbial Technology, 41(4), 498–505.
28 Dignum, M. J., Kerler, J., & Verpoorte, R. (2001). Vanilla production: technological, chemical, and biosynthetic aspects. Food Reviews International, 17, 119–120.
29 Fleige, C., Hansen, G., Kroll, J., & Steinbüchel, A. (2013). Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin. Applied and Environmental Microbiology, 79, 81–90.
30 Furukawa, H., Morita, H., Yoshida, T., & Nagasawa, T. (2003). Conversion of isoeugenol into vanillic acid by Pseudomonas putida I58 cells exhibiting high isoeugenol‐degrading activity. Journal of Bioscience and Bioengineering, 96, 401–403.
31 Galadima, A. I., Salleh, M. M., Hussin, H., Safri, N. M., Noor, R. M., Chong, C. S., & Naser, M. A. (2020). One‐step conversion of lemongrass leaves hydrolysate to biovanillin by Phanerochaete chrysosporium ATCC 24725 in batch culture. Waste and Biomass Valorization 11(8), 4067–4080.
32 Gallage, N. J., & Møller, B. L. (2015). Vanillin–bioconversion and bioengineering of the most popular plant flavor and its de novo biosynthesis in the vanilla orchid. Molecular Plant, 8(1), 40–57.
33 García‐Bofill, M., Sutton, P. W., Guillen, M., & Alvaro, G. (2019). Enzymatic synthesis of vanillin catalysed by an eugenol oxidase. Applied Catalysis A: General, 582, 117117.
34 Gobley, N. T. (1858). Recherches sur le principe odorant de la vanille. Journal de Pharmacie et de Chimie, 34, 401–405.
35 Gunnarsson, N., & Palmqvist, E.A. (2006). Influence of pH and carbon source on the production of vanillin from ferulic acid by Streptomyces setonii ATCC 39116. Developments in Food Science, 43, 73–76.
36 Guo, J., Han, X., Zhan, J., You, Y., & Huang, W. (2018). Vanillin alleviates high fat diet‐induced obesity and improves the gut microbiota composition. Frontiers in Microbiology, 9, 2733.
37 Gupta, S. C., Kim, J. H., Prasad, S., & Aggarwal, B. B. (2010). Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals.Cancer Metastasis Reviews, 29(3), 405–434.
38 Havkin‐Frenkel, D., Podstolski, A., Witkowska, E., Molecki, P., & Mikolajczyk, M. (1999). Vanillin biosynthetic pathways. In Plant Cell and Tissue Culture for the Production of Food Ingredients 35–43. Springer, Boston, MA.
39 van den Heuvel, R. H., Fraaije, M. W., Laane, C., & van Berkel, W. J. (2001). Enzymatic synthesis of vanillin. Journal of Agricultural and Food Chemistry, 49(6), 2954–2958.
40 Ho, K., Yazan, L. S., Ismail, N., & Ismail, M. (2009). Apoptosis and cell cycle arrest of human colorectal cancer cell line HT‐29 induced by vanillin. Cancer Epidemiology, 33, 155–160.
41 Hocking, M. B. (1997). Vanillin: synthetic flavoring from spent sulfite liquor. Journal of Chemical Education, 74, 1055.
42 Hua, D., Ma, C., Lin, S., Song, L., Deng, Z., Maomy, Z& Xu, P. (2007). Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: identification of major metabolites. Journal of Biotechnology, 130(4), 463–470.
43 Jakobsen, T. H., Bragason, S. K., Phipps, R. K., Christensen, L. D., van Gennip, M., Alhede, M., … & Givskov, M. (2012). Food as a source for quorum sensing inhibitors: iberin from horseradish revealed as a quorum sensing inhibitor of Pseudomonas aeruginosa. Applied and Environmental Microbiology, 78(7), 2410–2421.
44 Jin, J., Mazon, H., van den Heuvel, R. H., Janssen, D. B., & Fraaije, M. W. (2007). Discovery of a eugenol oxidase from Rhodococcus sp. strain RHA1. The FEBS Journal, 274(9), 2311–2321.
45 Kanisawa, T. (1993). Flavor development in vanilla beans. Kouryou, 180: 113
46 Karmakar, B., Vohra, R. M., Nandanwar, H., Sharma, P., Gupta, K. G., & Sobti, R. C. (2000). Rapid degradation of ferulic acid via 4‐vinylguaiacol and vanillin by a newly isolated strain of Bacillus coagulans. Journal of Biotechnology, 80, 195–202.
47 Karode, B., Patil, U., & Jobanputra, A. (2013). Biotransformation of low cost lignocellulosic substrates into vanillin by white rot fungus, Phanerochaete chrysosporium NCIM 1197. Indian Journal of Biotechnology, 12(2), 281–283.
48 Kasana, R. C., Sharma, U. K., Sharma, N., & Sinha, A. K. (2007). Isolation and identification of a novel strain of Pseudomonas chlororaphis capable of transforming isoeugenol to vanillin. Current Microbiology, 54, 457–461.
49 Kaur, B., Chakraborty, D., Kaur, G., & Kaur, G. (2013). Biotransformation of rice bran to ferulic acid by Pediococcal isolates. Applied Biochemistry and Biotechnology, 170(4), 854–867.
50 Kurutas, E. B. (2016). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition Journal, 15(1), 1–22.
51 Lee, E. G., Yoon, S. H., Das, A., Lee, S. H., Li, C., Kim, J. Y., & Kim, S. W. (2009). Directing vanillin production from ferulic acid by increased acetyl‐CoA consumption in recombinant Escherichia coli. Biotechnology and Bioengineering, 102, 200–208.
52 Lesage‐Meessen, L., Delattre,