Nanotechnology-Enhanced Food Packaging. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Nanotechnology-Enhanced Food Packaging - Группа авторов страница 26

Nanotechnology-Enhanced Food Packaging - Группа авторов

Скачать книгу

(7): 792–800.

      49 49 El Fawal, G., Hong, H., Song, X. et al. (2020). Fabrication of antimicrobial films based on hydroxyethylcellulose and ZnO for food packaging application. Food Packag. Shelf Life 23.

      50 50 Lopez-Polo, J., Silva-Weiss, A., Zamorano, M., and Osorio, F.A. (2020). Humectability and physical properties of hydroxypropyl methylcellulose coatings with liposome-cellulose nanofibers: Food application. Carbohydr. Polym. 231: 1–10.

      51 51 Abdou, E.S., Nagy, K.S.A., and Elsabee, M.Z. (2008). Extraction and characterization of chitin and chitosan from local sources. Bioresour. Technol. 99: 1359–1367.

      52 52 Marei, N.H., El-Samie, E.A., Salah, T. et al. (2016). Isolation and characterization of chitosan from different local insects in Egypt. Int. J. Biol. Macromol. 82: 871–877.

      53 53 Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31 (7): 603–632.

      54 54 Mujtaba, M., Morsi, R.E., Kerch, G. et al. (2019). Current advancements in chitosan-based film production for food technology; a review. Int. J. Biol. Macromol. 121: 889–904.

      55 55 Yoshida, C.M.P., Borges, V., Maciel, V. et al. (2014). Chitosan biobased and intelligent films : monitoring pH variations. LWT Food Sci. Technol. 55 (1): 83–89.

      56 56 Ge, J., Yue, P., Chi, J. et al. (2018). Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocolloids 74: 23–31.

      57 57 Elsabee, M.Z. and Abdou, E.S. (2013). Chitosan based edible films and coatings: a review. Mater. Sci. Eng., C 33 (4): 1819–1841.

      58 58 Rodríguez-Núñez, J.R., Madera-Santana, T.J., Sánchez-Machado, D.I. et al. (2014). Chitosan/hydrophilic plasticizer-based films: preparation, physicochemical and antimicrobial properties. J. Polym. Environ. 22 (1): 41–51.

      59 59 Badawy, M.E.I., Rabea, E.I., El-Nouby M, A.M. et al. (2017). Strawberry shelf life, composition, and enzymes activity in response to edible chitosan coatings. Int. J. Fruit Sci. 17 (2): 117–136.

      60 60 Halász, K. and Csóka, L. (2018). Black chokeberry (Aronia melanocarpa) pomace extract immobilized in chitosan for colorimetric pH indicator film application. Food Packag. Shelf Life 16 (September 2017): 185–193.

      61 61 Remedio, L.N., Silva dos Santos, J.W., Vieira Maciel, V.B. et al. (2019). Characterization of active chitosan films as a vehicle of potassium sorbate or nisin antimicrobial agents. Food Hydrocolloids 87 (June 2018): 830–838.

      62 62 Wu, C., Sun, J., Lu, Y. et al. (2019). In situ self-assembly chitosan/ɛ-polylysine bionanocomposite film with enhanced antimicrobial properties for food packaging. Int. J. Biol. Macromol. 132: 385–392.

      63 63 Gates, S.J. and Shukla, A. (2017). Layer-by-layer assembly of readily detachable chitosan and poly(acrylic acid) polyelectrolyte multilayer films. J. Polym. Sci., Part B: Polym. Phys. 55 (2): 127–131.

      64 64 Galvis-Sánchez, A.C., Castro, M.C.R., Biernacki, K. et al. (2018). Natural deep eutectic solvents as green plasticizers for chitosan thermoplastic production with controlled/desired mechanical and barrier properties. Food Hydrocolloids 82: 478–489.

      65 65 Chabbi, J., Jennah, O., Katir, N. et al. (2018). Aldehyde-functionalized chitosan-montmorillonite films as dynamically-assembled, switchable-chemical release bioplastics. Carbohydr. Polym. 183: 287–293.

      66 66 Fernandes, C., Calderon V., S., Ballesteros, L.F. et al. (2018). Carbon-based sputtered coatings for enhanced chitosan-based films properties. Appl. Surf. Sci. 433: 689–695.

      67 67 Serio, A., Chaves-López, C., Sacchetti, G. et al. (2018). Chitosan coating inhibits the growth of Listeria monocytogenes and extends the shelf life of vacuum-packed pork loins at 4 °C. Foods 7 (10): 1–10.

      68 68 Bilbao-Sainz, C., Chiou, B.S., Punotai, K. et al. (2018). Layer-by-layer alginate and fungal chitosan based edible coatings applied to fruit bars. J. Food Sci. 83 (7): 1880–1887.

      69 69 Castelo Branco Melo, N.F., de MendonçaSoares, B.L., Marques Diniz, K. et al. (2018). Effects of fungal chitosan nanoparticles as eco-friendly edible coatings on the quality of postharvest table grapes. Postharvest Biol. Technol. 139 (January): 56–66.

      70 70 Gorgieva, S. and Kokol, V. (2011). Collagen- vs. gelatine-based biomaterials and their biocompatibility: review and perspectives. In: Biomaterials Applications for Nanomedicine (ed. R. Pignatello), 17–52. InTech.

      71 71 Etxabide, A., Uranga, J., Guerrero, P., and de la Caba, K. (2017). Development of active gelatin films by means of valorisation of food processing waste: a review. Food Hydrocolloids 68: 192–198.

      72 72 Bhagwat, P.K. and Dandge, P.B. (2018). Collagen and collagenolytic proteases: a review. Biocatal. Agric. Biotechnol. 15 (May): 43–55.

      73 73 Da Silva, T.F. and Penna, A.L.B. (2012). Colágeno: Características químicas e propriedades funcionais. Rev. Inst. Adolfo Lutz 71 (3): 530–539.

      74 74 Osawa, Y., Mizushige, T., Jinno, S. et al. (2018). Absorption and metabolism of orally administered collagen hydrolysates evaluated by the vascularly perfused rat intestine and liver in situ. Biomed Res. 39 (1): 1–11.

      75 75 Correia, D.M., Padrão, J., Rodrigues, L.R. et al. (2013). Thermal and hydrolytic degradation of electrospun fish gelatin membranes. Polym. Test. 32 (5): 995–1000.

      76 76 Lin, L., Regenstein, J.M., Lv, S. et al. (2017). An overview of gelatin derived from aquatic animals: properties and modification. Trends Food Sci. Technol. 68: 102–112.

      77 77 Lv, L.C., Huang, Q.Y., Ding, W. et al. (2019). Fish gelatin: the novel potential applications. J. Funct. Foods 63: 1–14.

      78 78 Aitboulahsen, M., Zantar, S., Laglaoui, A. et al. (2018). Gelatin-based edible coating combined with Mentha pulegium essential oil as bioactive packaging for strawberries. J. Food Qual. 2018.

      79 79 dos Garcia, V.A., S., Borges, J.G., Osiro, D. et al. (2020). Orally disintegrating films based on gelatin and starch pregelatinized: new carriers of active compounds from acerola. Food Hydrocolloids 101: 1–12.

      80 80 He, Q., Zhang, Y., Cai, X., and Wang, S. (2016). Fabrication of gelatin-TiO2 nanocomposite film and its structural, antibacterial and physical properties. Int. J. Biol. Macromol. 84: 153–160.

      81 81 Wang, Z., Hu, S., Gao, Y. et al. (2017). Effect of collagen-lysozyme coating on fresh-salmon fillets preservation. LWT Food Sci. Technol. 75: 59–64.

      82 82 Wang, Z., Hu, S., and Wang, H. (2017). Scale-up preparation and characterization of collagen/sodium alginate blend films. J. Food Qual. 2017: 1–11.

      83 83 Wang, W., Liu, Y., Jia, H. et al. (2017). Effects of cellulose nanofibers filling and palmitic acid emulsions coating on the physical properties of fish gelatin films. Food Biophys. 12 (1): 23–32.

      84 84 Batpho, K., Boonsupthip, W., and Rachtanapun, C. (2017). Antimicrobial activity of collagen casing impregnated with nisin against foodborne microorganisms associated with ready-to-eat sausage. Food Control 73: 1342–1352.

      85 85 López-Carballo, G., Hernández-Muñoz, P., and Gavara, R. (2018). Photoactivated self-sanitizing chlorophyllin-containing coatings to prevent microbial contamination in packaged food. Coatings 8 (9): 1–14.

      86 86 Amjadi, S., Emaminia, S., Nazari, M. et al. (2019). Application of reinforced ZnO nanoparticle-incorporated

Скачать книгу