Nanotechnology-Enhanced Food Packaging. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Nanotechnology-Enhanced Food Packaging - Группа авторов страница 31
3.1.4 Perspectives and Outlook
Starch nanomaterials have generated great interest due to their relatively easy synthesis and the fact that they can be easily modified, through chemical, physical, and enzymatic methods to tailor their properties as needed. Although there have been several studies about the application of starch nanomaterials in food packaging and as nanovehicles for bioactive molecules, there is still plenty of room for research, as starch from every botanical source has different properties that can be used in order to obtain different types of nanovehicles. Furthermore, starch nanomaterials can be modified to improve mechanical, barrier, and optical properties of packaging materials, while other modifications can be used to improve encapsulation of bioactive molecules in either active food packaging or nanomedicine.
References
1 1 Ai, Y. and Jane, J.-l. (2015). Gelatinization and rheological properties of starch. Starch - Stärke 67 (3–4): 213–224. https://doi.org/10.1002/star.201400201.
2 2 Magallanes-Cruz, P.A., Flores-Silva, P.C., and Bello-Perez, L.A. (2017). Starch structure influences its digestibility: a review. J. Food Sci. 82 (9): 2016–2023. https://doi.org/10.1111/1750-3841.13809.
3 3 Pérez, S. and Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch - Stärke 62 (8): 389–420. https://doi.org/10.1002/star.201000013.
4 4 Wang, S., Li, C., Copeland, L. et al. (2015). Starch retrogradation: a comprehensive review. Compr. Rev. Food Sci. Food Saf. 14 (5): 568–585. https://doi.org/10.1111/1541-4337.12143.
5 5 Odeku, O.A. (2013). Potentials of tropical starches as pharmaceutical excipients: a review. Starch - Stärke 65 (1–2): 89–106. https://doi.org/10.1002/star.201200076.
6 6 Le Corre, D. and Angellier-Coussy, H. (2014). Preparation and application of starch nanoparticles for nanocomposites: a review. React. Funct. Polym. 85: 97–120. https://doi.org/10.1016/j.reactfunctpolym.2014.09.020.
7 7 Jane, J.-l. (2009). Structural features of starch granules II, Chapter 6. In: Starch, 3e (eds. J. BeMiller and R. Whistler), 193–236. San Diego: Academic Press.
8 8 LeCorre, D., Bras, J., and Dufresne, A. (2011). Influence of botanic origin and amylose content on the morphology of starch nanocrystals. J. Nanopart. Res. 13 (12): 7193–7208. https://doi.org/10.1007/s11051-011-0634-2.
9 9 LeCorre, D.S., Bras, J., and Dufresne, A. (2012). Influence of the botanic origin of starch nanocrystals on the morphological and mechanical properties of natural rubber nanocomposites. Macromol. Mater. Eng. 297 (10): 969–978. https://doi.org/10.1002/mame.201100317.
10 10 Acevedo-Guevara, L., Nieto-Suaza, L., Sanchez, L.T. et al. (2018). Development of native and modified banana starch nanoparticles as vehicles for curcumin. Int. J. Biol. Macromol. 111: 498–504. https://doi.org/10.1016/j.ijbiomac.2018.01.063.
11 11 Kim, H.-Y., Park, S.S., and Lim, S.-T. (2015). Preparation, characterization and utilization of starch nanoparticles. Colloids Surf., B 126: 607–620. https://doi.org/10.1016/j.colsurfb.2014.11.011.
12 12 Ma, X., Jian, R., Chang, P.R., and Yu, J. (2008). Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 9 (11): 3314–3320. https://doi.org/10.1021/bm800987c.
13 13 Qin, Y., Liu, C., Jiang, S. et al. (2016). Characterization of starch nanoparticles prepared by nanoprecipitation: influence of amylose content and starch type. Ind. Crops Prod. 87 (Supplement C): 182–190. https://doi.org/10.1016/j.indcrop.2016.04.038.
14 14 Qiu, C., Hu, Y., Jin, Z. et al. (2019). A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems. Trends Food Sci. Technol. 92: 138–151. https://doi.org/10.1016/j.tifs.2019.08.007.
15 15 Kumari, S., Yadav, B.S., and Yadav, R.B. (2020). Synthesis and modification approaches for starch nanoparticles for their emerging food industrial applications: a review. Food Res. Int. 128: 108765. https://doi.org/10.1016/j.foodres.2019.108765.
16 16 Chin, S.F., Pang, S.C., and Tay, S.H. (2011). Size controlled synthesis of starch nanoparticles by a simple nanoprecipitation method. Carbohydr. Polym. 86 (4): 1817–1819. https://doi.org/10.1016/j.carbpol.2011.07.012.
17 17 Sadeghi, R., Daniella, Z., Uzun, S., and Kokini, J. (2017). Effects of starch composition and type of non-solvent on the formation of starch nanoparticles and improvement of curcumin stability in aqueous media. J. Cereal Sci. 76: 122–130. https://doi.org/10.1016/j.jcs.2017.05.020.
18 18 Hebeish, A., El-Rafie, M.H., El-Sheikh, M.A., and El-Naggar, M.E. (2014). Ultra-fine characteristics of starch nanoparticles prepared using native starch with and without surfactant. J. Inorg. Organomet. Polym. Mater. 24 (3): 515–524. https://doi.org/10.1007/s10904-013-0004-x.
19 19 Liu, D., Wu, Q., Chen, H., and Chang, P.R. (2009). Transitional properties of starch colloid with particle size reduction from micro- to nanometer. J. Colloid Interface Sci. 339 (1): 117–124. https://doi.org/10.1016/j.jcis.2009.07.035.
20 20 Escobar-Puentes, A.A., Rincón, S., García-Gurrola, A. et al. (2019). Preparation and characterization of succinylated nanoparticles from high-amylose starch via the extrusion process followed by ultrasonic energy. Food Bioprocess Technol. 12 (10): 1672–1682. https://doi.org/10.1007/s11947-019-02328-5.
21 21 Kaur, J., Kaur, G., Sharma, S., and Jeet, K. (2018). Cereal