Nanotechnology-Enhanced Food Packaging. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Nanotechnology-Enhanced Food Packaging - Группа авторов страница 32
22 22 Song, D., Thio, Y.S., and Deng, Y. (2011). Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydr. Polym. 85 (1): 208–214. https://doi.org/10.1016/j.carbpol.2011.02.016.
23 23 Homayouni, A., Sohrabi, M., Amini, M. et al. (2019). Effect of high pressure homogenization on physicochemical properties of curcumin nanoparticles prepared by antisolvent crystallization using HPMC or PVP. Mater. Sci. Eng., C 98: 185–196. https://doi.org/10.1016/j.msec.2018.12.128.
24 24 Tester, R.F., Karkalas, J., and Qi, X. (2004). Starch—composition, fine structure and architecture. J. Cereal Sci. 39 (2): 151–165. https://doi.org/10.1016/j.jcs.2003.12.001.
25 25 Akhavan, A. and Ataeevarjovi, E. (2012). The effect of gamma irradiation and surfactants on the size distribution of nanoparticles based on soluble starch. Radiat. Phys. Chem. 81 (7): 913–914. https://doi.org/10.1016/j.radphyschem.2012.03.004.
26 26 Lamanna, M., Morales, N.J., García, N.L., and Goyanes, S. (2013). Development and characterization of starch nanoparticles by gamma radiation: potential application as starch matrix filler. Carbohydr. Polym. 97 (1): 90–97. https://doi.org/10.1016/j.carbpol.2013.04.081.
27 27 Minakawa, A.F.K., Faria-Tischer, P.C.S., and Mali, S. (2019). Simple ultrasound method to obtain starch micro- and nanoparticles from cassava, corn and yam starches. Food Chem. 283: 11–18. https://doi.org/10.1016/j.foodchem.2019.01.015.
28 28 Ahmad, M., Gani, A., Masoodi, F.A., and Rizvi, S.H. (2020). Influence of ball milling on the production of starch nanoparticles and its effect on structural, thermal and functional properties. Int. J. Biol. Macromol. 151: 85–91. https://doi.org/10.1016/j.ijbiomac.2020.02.139.
29 29 Le Corre, D., Bras, J., and Dufresne, A. (2010). Starch nanoparticles: a review. Biomacromolecules 11 (5): 1139–1153. https://doi.org/10.1021/bm901428y.
30 30 Putaux, J.-L., Molina-Boisseau, S., Momaur, T., and Dufresne, A. (2003). Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4 (5): 1198–1202. https://doi.org/10.1021/bm0340422.
31 31 Angellier, H., Molina-Boisseau, S., Dole, P., and Dufresne, A. (2006). Thermoplastic starch−waxy maize starch nanocrystals nanocomposites. Biomacromolecules 7 (2): 531–539. https://doi.org/10.1021/bm050797s.
32 32 Villa, C.C., Sanchez, L.T., and Rodriguez-Marin, N.D. (2019). Starch nanoparticles and Nanocrystals as bioactive molecule carriers. In: Polymers for Agri-food Applications (ed. T.J. Gutierrez), 91–98. Springer Nature https://doi.org/10.1007/978-3-030-19416-1_6.
33 33 Foresti, M.L., Williams, M.d.P., Martínez-García, R., and Vázquez, A. (2014). Analysis of a preferential action of α-amylase from B. licheniformis towards amorphous regions of waxy maize starch. Carbohydr. Polym. 102: 80–87. https://doi.org/10.1016/j.carbpol.2013.11.013.
34 34 Kim, J.-Y., Park, D.-J., and Lim, S.-T. (2008). Fragmentation of waxy rice starch granules by enzymatic hydrolysis. Cereal Chem. 85 (2): 182–187. https://doi.org/10.1094/CCHEM-85-2-0182.
35 35 Hao, Y., Chen, Y., Li, Q., and Gao, Q. (2018). Preparation of starch nanocrystals through enzymatic pretreatment from waxy potato starch. Carbohydr. Polym. 184: 171–177. https://doi.org/10.1016/j.carbpol.2017.12.042.
36 36 Boufi, S., Bel Haaj, S., Magnin, A. et al. (2018). Ultrasonic assisted production of starch nanoparticles: structural characterization and mechanism of disintegration. Ultrason. Sonochem. 41: 327–336. https://doi.org/10.1016/j.ultsonch.2017.09.033.
37 37 Dai, L., Li, C., Zhang, J., and Cheng, F. (2018). Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis. Carbohydr. Polym. 180: 122–127. https://doi.org/10.1016/j.carbpol.2017.10.015.
38 38 Chen, G., Wei, M., Chen, J. et al. (2008). Simultaneous reinforcing and toughening: new nanocomposites of waterborne polyurethane filled with low loading level of starch nanocrystals. Polymer 49 (7): 1860–1870. https://doi.org/10.1016/j.polymer.2008.02.020.
39 39 Angellier, H., Molina-Boisseau, S., and Dufresne, A. (2005). Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber. Macromolecules 38 (22): 9161–9170. https://doi.org/10.1021/ma0512399.
40 40 Angellier, H., Molina-Boisseau, S., Lebrun, L., and Dufresne, A. (2005). Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber. Macromolecules 38 (9): 3783–3792. https://doi.org/10.1021/ma050054z.
41 41 Angellier, H., Molina-Boisseau, S., and Dufresne, A. (2006). Waxy maize starch nanocrystals as filler in natural rubber. Macromol. Symp. 233 (1): 132–136. https://doi.org/10.1002/masy.200690009.
42 42 Alberto Jiménez, María José Fabra, Pau Talens, Amparo Chiralt, Effect of re-crystallization on tensile, optical and water vapour barrier properties of corn starch films containing fatty acids, Food Hydrocolloids, Volume 26, Issue 1, 2012, Pages 302-310.
43 43 Campos, C.A., Gerschenson, L.N., and Flores, S.K. (2011). Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technol.4: 849–875. https://doi.org/10.1007/s11947-010-0434-1.
44 44 Pinzon, M.I., Garcia, O.R., and Villa, C.C. (2018). The influence of Aloe vera gel incorporation on the physicochemical and mechanical properties of banana starch-chitosan edible films. J. Sci. Food Agric. 98: 4042–4049. https://doi.org/10.1002/jsfa.8915.
45 45 Sánchez-Ortega, I., García-Almendárez, B.E., Santos-López, E.M. et al. (2016). Characterization and antimicrobial effect of starch-based edible coating suspensions. Food Hydrocolloids 52: 906–913.
46 46 Li, X., Qiu, C., Ji, N. et al. (2015). Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydr. Polym. 121: 155–162. https://doi.org/10.1016/j.carbpol.2014.12.040.
47 47 Nieto-Suaza, L., Acevedo-Guevara,