Nanotechnology-Enhanced Food Packaging. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Nanotechnology-Enhanced Food Packaging - Группа авторов страница 33
48 48 Silva, A.P.M., Oliveira, A.V., Pontes, S.M.A. et al. (2019). Mango kernel starch films as affected by starch nanocrystals and cellulose nanocrystals. Carbohydr. Polym. 211: 209–216. https://doi.org/10.1016/j.carbpol.2019.02.013.
49 49 Tian, H. and Xu, G. (2011). Processing and characterization of glycerol-plasticized soy protein plastics reinforced with citric acid-modified starch nanoparticles. J. Polym. Environ. 19 (3): 582–588. https://doi.org/10.1007/s10924-011-0304-6.
50 50 Zheng, H., Ai, F., Chang, P.R. et al. (2009). Structure and properties of starch nanocrystal-reinforced soy protein plastics. Polym. Compos. 30 (4): 474–480. https://doi.org/10.1002/pc.20612.
51 51 Condés, M.C., Añón, M.C., Mauri, A.N., and Dufresne, A. (2015). Amaranth protein films reinforced with maize starch nanocrystals. Food Hydrocolloids 47: 146–157. https://doi.org/10.1016/j.foodhyd.2015.01.026.
52 52 Dai, L., Zhang, J., and Cheng, F. (2019). Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films. Int. J. Biol. Macromol. 132: 897–905. https://doi.org/10.1016/j.ijbiomac.2019.03.197.
53 53 Mukurumbira, A.R., Mellem, J.J., and Amonsou, E.O. (2017). Effects of amadumbe starch nanocrystals on the physicochemical properties of starch biocomposite films. Carbohydr. Polym. 165: 142–148. https://doi.org/10.1016/j.carbpol.2017.02.041.
54 54 Rostamabadi, H., Falsafi, S.R., and Jafari, S.M. (2019). Starch-based nanocarriers as cutting-edge natural cargos for nutraceutical delivery. Trends Food Sci. Technol. 88: 397–415. https://doi.org/10.1016/j.tifs.2019.04.004.
55 55 Farrag, Y., Ide, W., Montero, B. et al. (2018). Preparation of starch nanoparticles loaded with quercetin using nanoprecipitation technique. Int. J. Biol. Macromol. 114: 426–433. https://doi.org/10.1016/j.ijbiomac.2018.03.134.
56 56 Bose, S., Du, Y., Takhistov, P., and Michniak-Kohn, B. (2013). Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems. Int. J. Pharm. 441 (1): 56–66. https://doi.org/10.1016/j.ijpharm.2012.12.013.
57 57 Jeszka-Skowron, M., Krawczyk, M., and Zgoła-Grześkowiak, A. (2015). Determination of antioxidant activity, rutin, quercetin, phenolic acids and trace elements in tea infusions: influence of citric acid addition on extraction of metals. J. Food Compos. Anal. 40: 70–77. https://doi.org/10.1016/j.jfca.2014.12.015.
58 58 Anand, P., Kunnumakkara, A.B., Newman, R.A., and Aggarwal, B.B. (2007). Bioavailability of curcumin: problems and promises. Mol. Pharmaceutics 4 (6): 807–818. https://doi.org/10.1021/mp700113r.
59 59 Maghsoudi, A., Yazdian, F., Shahmoradi, S. et al. (2017). Curcumin-loaded polysaccharide nanoparticles: optimization and anticariogenic activity against Streptococcus mutans. Mater. Sci. Eng., C 75: 1259–1267. https://doi.org/10.1016/j.msec.2017.03.032.
60 60 Mai, Z., Chen, J., He, T. et al. (2017). Electrospray biodegradable microcapsules loaded with curcumin for drug delivery systems with high bioactivity. RSC Adv. 7 (3): 1724–1734. https://doi.org/10.1039/C6RA25314H.
61 61 Menon, V.P. and Sudheer, A.R. (2007). Antioxidant and anti-inflammatory properties of curcumin. In: The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease (eds. B.B. Aggarwal, Y.-J. Surh and S. Shishodia), 105–125. Boston, MA: Springer US.
62 62 Mirzaei, H., Shakeri, A., Rashidi, B. et al. (2017). Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies. Biomed. Pharmacother. 85: 102–112. https://doi.org/10.1016/j.biopha.2016.11.098.
63 63 Nelson, K.M., Dahlin, J.L., Bisson, J. et al. (2017). The essential medicinal chemistry of curcumin. J. Med. Chem. 60 (5): 1620–1637. https://doi.org/10.1021/acs.jmedchem.6b00975.
64 64 Oliveira, A.S., Sousa, E., Vasconcelos, M.H., and Pinto, M. (2015). Curcumin: a natural lead for potential new drug candidates. Curr. Med. Chem. 22: 4196.
65 65 Sahu, A.K., Mishra, J., and Mishra, A.K. (2020). Introducing tween-curcumin niosomes: preparation, characterization and microenvironment study. Soft Matter 16 (7): 1779–1791. https://doi.org/10.1039/C9SM02416F.
66 66 Stanić, Z. (2017). Curcumin, a compound from natural sources, a true scientific challenge – a review. Plant Foods Hum. Nutr. 72 (1): 1–12. https://doi.org/10.1007/s11130-016-0590-1.
67 67 Chin, S.F., Mohd Yazid, S.N.A., and Pang, S.C. (2014). Preparation and characterization of starch nanoparticles for controlled release of curcumin. Int. J. Polym. Sci. 2014: 8. https://doi.org/10.1155/2014/340121.
68 68 Santoyo-Aleman, D., Sanchez, L.T., and Villa, C.C. (2019). Citric-acid modified banana starch nanoparticles as a novel vehicle for β-carotene delivery. J. Sci. Food Agric. https://doi.org/10.1002/jsfa.9918.
69 69 Pang, S.C., Tay, S.H., and Chin, S.F. (2014). Facile synthesis of curcumin-loaded starch-maleate nanoparticles. J. Nanomater. 2014: 7. https://doi.org/10.1155/2014/824025.
70 70 de Oliveira, N.R., Fornaciari, B., Mali, S., and Carvalho, G.M. (2017). Acetylated starch-based nanoparticles: synthesis, characterization, and studies of interaction with antioxidants. Starch - Stärke 70 (3–4): 1700170. https://doi.org/10.1002/star.201700170.
71 71 Ahmad, M., Mudgil, P., Gani, A. et al. (2019). Nano-encapsulation of catechin in starch nanoparticles: characterization, release behavior and bioactivity retention during simulated in-vitro digestion. Food Chem. 270: 95–104. https://doi.org/10.1016/j.foodchem.2018.07.024.
72 72 Shabana, S., Prasansha, R., Kalinina, I. et al. (2018). Ultrasound assisted acid hydrolyzed structure modification and loading of antioxidants on potato starch nanoparticles. Ultrason. Sonochem. https://doi.org/10.1016/j.ultsonch.2018.07.023.
73 73 Ballard, J.M., Zhu, L., Nelson, E.D., and Seburg, R.A. (2007). Degradation of vitamin D3 in a stressed formulation: the identification