Водородное топливо. Производство, хранение, использование. Юрий Степанович Почанин

Чтение книги онлайн.

Читать онлайн книгу Водородное топливо. Производство, хранение, использование - Юрий Степанович Почанин страница 8

Водородное топливо. Производство, хранение, использование - Юрий Степанович Почанин

Скачать книгу

в нагревании газа в присутствии водяного пара, никелевого катализатора и при давлении 2 МПа (около 19 атмосфер). Результирующая эндотермическая реакция расщепляет молекулы метана и образует оксид углерода CO и водород H2. Затем газообразный оксид углерода можно пропустить с паром через оксид железа или других оксидов и подвергаются реакция конверсии водяного газа для получения дополнительных количеств H2. Обратной стороной этого процесса является то, что его основными побочными продуктами являются CO, CO2 и другие парниковые газы. При одной тонне произведенного водорода также будет производиться от 9 до 12 тонн CO2, парниковый газ, который может улавливаться.

      Конверсия парового природного газа обычно происходит в два этапа. Первый этап осуществляется в трубах, заполненных никелевым катализатором, нанесенным на алюминиевую подложку, рис. 2.3.

      

      Рис.2.3. Схема реактора паровой конверсии природного газа

      На этом этапе расщепляется метан и водяной пар на водород и монооксид углерода (синтез-газ):

      СН4+ Н2О ↔ СО + 3Н2–206 кДж/моль.

      На втором этапе выход водорода увеличивается благодаря дополнительной реакции СО с водой при пониженных температурах в присутствии катализаторов

      «Реакция сдвига» превращает монооксид углерода и воду в диоксид углерода и водород:

      СО + Н2О ↔ СО2+ Н2+ 44 кДж/моль.

      Эта реакция происходит при температурах 200–250°С. При осуществлении указанных реакций может быть извлечено около 96% водорода, а необходимая теплота процесса получается при сжигании части природного газа. Тепло, необходимое для процесса, подается через стенки труб, нагретых снаружи путем сжигания другой части природного газа.

      Очистка продуктового водорода производится в блоке короткоцикловой адсорбции (КЦА).

      В парокислородной конверсии вместе с горячим паром в активную зону реактора подаётся кислород. Реакции процесса аналогичные, однако, дополнительно происходит окисление метана кислородом:

      CH4+O2 ↔ 2CO+3H2.

      Реагирование веществ в парокислородной конверсии метана даёт общий результирующий тепловой эффект, равный нулю. Это делает установку дороже на 5–10 %.

      Главное преимущество парокислородной конверсии по сравнению с ПКМ – передача теплоты напрямую, а не через стенку теплообменника. Сравнение характеристик ПКМ и парокислородной конверсии представлено в таблице 2.1.

      Таблица 2.1. Сравнение характеристик ПКМ и парокислородной конверсии

      

      В настоящий момент уже разработан высокоэффективный проточный мембранный аппарат для одновременного риформинга метана и окисления СО на никелевых и палладиевых катализаторах. Чистота водорода достигает 99,999 %, тогда как при конверсии природного газа – всего 76,2%.

      Наиболее критическими параметрами в этом способе производства водорода являются выбор оптимальной температуры

Скачать книгу