Искусственный интеллект: перезагрузка. Как создать машинный разум, которому действительно можно доверять. Эрнест Дэвис

Чтение книги онлайн.

Читать онлайн книгу Искусственный интеллект: перезагрузка. Как создать машинный разум, которому действительно можно доверять - Эрнест Дэвис страница 10

Искусственный интеллект: перезагрузка. Как создать машинный разум, которому действительно можно доверять - Эрнест Дэвис

Скачать книгу

визитом, чтобы кардинально улучшить наше поведение в плане выбора транспорта. Если программисты хотят обучить робота для помощи пожилым людям (скажем, чтобы он помогал уложить немощных людей в постель), каждый бит данных будет стоить реальных денег и реального человеческого времени; здесь нет возможности собрать все требуемые данные с помощью симуляционных игр. Даже манекены для краш-тестов не могут стать заменой реальным людям. Нужно собирать данные о настоящих пожилых людях с разными особенностями старческих движений, о разных видах кроватей, разных видах пижам, разных типах домов, и здесь нельзя допускать ошибок, ведь уронить человека даже на расстоянии нескольких сантиметров от кровати было бы катастрофой. В данном случае на карту поставлены реальные жизни[6]. Как IBM обнаруживала не один, а уже целых два раза (сначала в шахматах, а затем в Jeopardy!), успех в задачах из закрытого мира совершенно не гарантирует успеха в мире открытом.

      Третий круг описываемой пропасти – это переоценка надежности. Снова и снова мы видим, что, как только люди с помощью искусственного интеллекта находят решение какой-то проблемы, которое способно функционировать без сбоев некоторое время, они автоматически предполагают, что при доработке (и с несколько большим объемом данных) оно будет надежно работать все время. Но это вовсе не обязательно так.

      Берем опять автомобили без водителей. Сравнительно легко создать демоверсию беспилотного автомобиля, который будет правильно двигаться по четко размеченной полосе на спокойной дороге; впрочем, люди умеют это делать уже больше века. Однако куда сложнее заставить эти системы работать в сложных или неожиданных обстоятельствах. Как рассказала нам в письме Мисси Каммингс, директор Лаборатории человека и автономных механизмов (Humans and Autonomy Laboratory) Университета Дьюка (и бывший летчик-истребитель ВМС США), вопрос не в том, сколько миль машина без водителя может проехать, не попав в аварию, а в том, насколько эти автомобили умеют адаптироваться к меняющимся ситуациям. По ее словам, современные полуавтономные транспортные средства «обычно работают только в очень узком диапазоне условий[7], которые ничего не говорят о том, как они могут работать при условиях, отличающихся от идеальных». Выглядеть почти абсолютно надежным на миллионах пробных миль в Фениксе не означает хорошо функционировать во время муссона в Бомбее.

      Это принципиальное различие между тем, как автономные транспортные средства ведут себя в идеальных условиях (например, солнечные дни на загородных многополосных дорогах), и тем, что они могли бы сделать в экстремальных условиях, легко может сделаться вопросом успеха и провала целой отрасли. Из-за того что так мало внимания уделяется автономному вождению в экстремальных условиях и что современная методология не развивается в том направлении, чтобы гарантировать корректную работу автопилота в условиях, которые только-только начинают рассматриваться по-настоящему,

Скачать книгу


<p>6</p>

Определенный прогресс (пока что самый элементарный) в этой области был достигнут с использованием методов узкого искусственного интеллекта. Были разработаны компьютерные системы, которые играют почти на уровне лучших игроков-людей в видеоигры Dota 2 и Starcraft 2, где в любой момент времени участникам показывается только часть игрового мира и, таким образом, перед каждым игроком встает проблема нехватки информации – то, что с легкой руки Клаузевица называют «туманом неизвестности». Однако разработанные системы все равно остаются очень узкоориентированными и неустойчивыми в работе. Например, программа AlphaStar, которая играет в Starcraft 2, обучалась действиям только одной конкретной расы из всего множества персонажей, и почти ничто из этих наработок не является пригодным для игры за любую другую расу. И, разумеется, нет никаких оснований полагать, что методы, используемые в этих программах, пригодны, чтобы делать успешные обобщения в гораздо более сложных ситуациях реальной жизни.

<p>7</p>

Мисси Каммингс (Missy Cummings), электронное письмо авторам от 22 сентября 2018 года.

ГЛАВА 2