Computational Geomechanics. Manuel Pastor

Чтение книги онлайн.

Читать онлайн книгу Computational Geomechanics - Manuel Pastor страница 17

Автор:
Жанр:
Серия:
Издательство:
Computational Geomechanics - Manuel Pastor

Скачать книгу

href="#fb3_img_img_f27bd083-58a3-582c-9c10-37f58658b953.png" alt="chi Subscript w Baseline equals chi Subscript w Baseline left-parenthesis upper S Subscript w Baseline right-parenthesis"/>

      and

      (1.22b)chi Subscript a Baseline equals chi Subscript a Baseline left-parenthesis upper S Subscript a Baseline right-parenthesis

      Occasionally, the contact of one of the phases and the solid may disappear entirely as shown in Figure 1.5a giving isolated air bubbles and making in this limit

      (1.23)chi Subscript a Baseline equals 0 chi Subscript w Baseline equals 1

      In many situations, in soil mechanics, it is sufficient to take χ equal to the respective degrees of saturation (Lewis and Schrefler 1982; Nuth and Laloui 2008).

      Whatever the nature of the contact, we shall find, neglecting the hysteresis during the wetting and drying cycles, that a unique relationship between pc and the saturation Sw can be written, i.e.

      Indeed, the degree of saturation will similarly affect flow parameters such as the permeability k to which we shall make reference in the next chapter, giving

      (1.25)StartLayout 1st Row k Subscript w Baseline equals k Subscript w Baseline left-parenthesis upper S Subscript w Baseline right-parenthesis 2nd Row k Subscript a Baseline equals k Subscript a Baseline left-parenthesis upper S Subscript a Baseline right-parenthesis EndLayout

Schematic illustration of typical relations between pore pressure head.

      Source: From Safai and Pinder (1979).

      1 1 Such strength reduction phenomena are mainly evident in essentially non‐cohesive materials such as sand and silt. Clays in which negative capillary pressure provide an apparent cohesion are less liable to such strength reduction.

      1 Alonso, E. E., Gens, A., and Hight, D. W. (1987). Special problem soils. General report. Proc. 9th European Conf. Soil Mechanics and Foundation Eng., 3, 1087–1146.

      2 Arulanandan, K. and Scott, R. F. (Eds) (1993). Proceedings of the VELACS Symposium, 1, A. A. Balkema, Rotterdam.

      3 Bear, J., Corapcioglu, M. Y. and Balakrishna, J., (1984). Modeling of centrifugal filtration in unsaturated deformable porous media, Adv. Water Resour., 7, 150–167.

      4 Biot, M. A. (1941). General theory of three‐dimensional consolidation, J. Appl. Phys., 12, 155–164.

      5 Biot, M. A. (1955). Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26, 182–185.

      6 Biot, M. A. (1956a). Theory of propagation of elastic waves in a fluid‐saturated porous solid, part I–low‐frequency range, J. Acoust. Soc. Am., 28, 2, 168–178.

      7 Biot, M. A. (1956b). Theory of propagation of elastic waves in a fluid‐saturated porous solid, part‐II‐higher frequency range, J. Acoust. Soc. Am., 28, 2, 179–191.

      8 Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 33, 4, 1482–1498.

      9 Biot, M. A. and Willis, P. G. (1957). The elastic coefficients of the theory consolidation, J. Appl. Mech., 24, 594–601.

      10 Bishop, A. W. (1959). The principle of effective stress, Teknisk Ukeblad, 39, 859–863.

      11 Boussinesq, J. (1876). Essai théorique sur l'equilibre d'elasticité des massif pulvérulents, Mem. savants étrangers, Acad. Belgique, 40, 1–180.

      12 De Boer, R. (1996). Highlights in the historical development of the porous media theory, Appl. Mech. Rev., 49, 201–262.

      13 De Boer, R., Schiffman, R. L. and Gibson, R. E. (1996). The origins of the theory of consolidation: the Terzaghi‐Fillunger dispute, Géotechnique, 46, 2, 175–186.

      14 Fillunger, P. (1913a). Der Auftrieb in Talsperren. Österr. Wochenschrift öffentlichen Baudienst, 532–556.

      15 Fillunger, P. (1913b). Der Auftrieb in Talsperren. Österr. Wochenschrift öffentlichen Baudienst, 567–570.

      16 Fillunger, P. (1915). Versuch über die Zugfestigkeit bei allseitigem Wasserdruck, Österr. Wochenschrift offentl. Baudienst, H29, 443–448.

      17 Gray, W. G., Schrefler, B. A., and Pesavento, F. (2009). The solid stress tensor in porous media mechanics and the Hill‐Mandel condition, J. Mech. Phys. Solids., 57, 539–544.

      18 Leliavsky, S. (1947). Experiments on effective area in gravity dams, Trans. Am. Soc. Civ. Eng., 112, 444.

      19 Levy,

Скачать книгу