Computational Geomechanics. Manuel Pastor

Чтение книги онлайн.

Читать онлайн книгу Computational Geomechanics - Manuel Pastor страница 27

Автор:
Жанр:
Серия:
Издательство:
Computational Geomechanics - Manuel Pastor

Скачать книгу

alpha ModifyingAbove epsilon With ampersand c period dotab semicolon Subscript italic i i plus upper S Subscript w Baseline StartFraction n Over upper K Subscript f Baseline EndFraction ModifyingAbove p With ampersand c period dotab semicolon Subscript w plus StartFraction alpha minus n Over upper K Subscript s Baseline EndFraction chi Subscript w Baseline ModifyingAbove p With ampersand c period dotab semicolon Subscript w plus n ModifyingAbove upper S With ampersand c period dotab semicolon Subscript w plus italic n upper S Subscript w Baseline StartFraction ModifyingAbove rho With ampersand c period dotab semicolon Subscript w Baseline Over rho Subscript w Baseline EndFraction plus ModifyingAbove s With ampersand c period dotab semicolon Subscript 0 2nd Row identical-to w Subscript i comma i Baseline plus alpha ModifyingAbove epsilon With ampersand c period dotab semicolon Subscript italic i i Baseline plus StartFraction ModifyingAbove p With ampersand c period dotab semicolon Subscript w Baseline Over upper Q Superscript asterisk Baseline EndFraction plus italic n upper S Subscript w Baseline StartFraction ModifyingAbove rho With ampersand c period dotab semicolon Subscript w Baseline Over rho Subscript w Baseline EndFraction plus ModifyingAbove s With ampersand c period dotab semicolon Subscript 0 Baseline equals 0 EndLayout"/>

      or

      (2.30b)italic nabla Superscript upper T Baseline bold-italic w plus alpha bold-italic m Superscript upper T Baseline ModifyingAbove bold-italic epsilon With ampersand c period dotab semicolon plus StartFraction ModifyingAbove p With ampersand c period dotab semicolon Subscript w Baseline Over upper Q Superscript asterisk Baseline EndFraction plus italic n upper S Subscript w Baseline StartFraction ModifyingAbove rho With ampersand c period dotab semicolon Subscript w Baseline Over rho Subscript w Baseline EndFraction plus ModifyingAbove s With ampersand c period dotab semicolon Subscript 0 Baseline equals 0

      (2.30c)StartFraction 1 Over upper Q Superscript asterisk Baseline EndFraction identical-to upper C Subscript s Baseline plus StartFraction italic n upper S Subscript w Baseline Over upper K Subscript f Baseline EndFraction plus StartFraction left-parenthesis alpha minus n right-parenthesis chi Subscript w Baseline Over upper K Subscript s Baseline EndFraction

      which, of course, must be identical with (2.17) when Sw = 1 and χw = 1, i.e. when we have full saturation. The above modification is mainly due to an additional term to those defining the increased storage in (2.17). This term is due to the changes in the degree of saturation and is simply:

      (2.31)n StartFraction normal d upper S Subscript w Baseline Over normal d t EndFraction

      but here we introduce a new parameter CS defined as

      (2.32)n StartFraction normal d upper S Subscript w Baseline left-parenthesis p Subscript w Baseline right-parenthesis Over italic d t EndFraction equals n StartFraction normal d upper S Subscript w Baseline left-parenthesis p Subscript w Baseline right-parenthesis Over normal d p Subscript w Baseline EndFraction StartFraction normal d p Subscript w Baseline Over normal d t EndFraction equals upper C Subscript s Baseline ModifyingAbove p With ampersand c period dotab semicolon Subscript w

      The final elimination of w in a manner identical to that used when deriving (2.21) gives (neglecting density variation):

      (2.33a)left-parenthesis k Subscript italic i j Baseline left-parenthesis minus p Subscript w comma j Baseline minus upper S Subscript w Baseline rho Subscript f Baseline ModifyingAbove u With two-dots Subscript j Baseline plus upper S Subscript w Baseline rho Subscript f Baseline b Subscript j Baseline right-parenthesis right-parenthesis Subscript comma i Baseline plus alpha ModifyingAbove epsilon With ampersand c period dotab semicolon Subscript italic i i Baseline plus StartFraction ModifyingAbove p With ampersand c period dotab semicolon Over upper Q Superscript asterisk Baseline EndFraction plus ModifyingAbove s With ampersand c period dotab semicolon Subscript 0 Baseline equals 0

      or

      The small changes required here in the solution process are such that we found it useful to construct our computer program for the partially saturated form, with the fully saturated form being a special case.

      In the time‐stepping computation, we still always assume that the parameters Sw, kw, and Cs change slowly and hence we will compute these at the start of the time interval keeping them subsequently constant.

      Previously, we mentioned several typical cases where pressure can become negative and hence saturation drops below unity. One frequently encountered example is that of the flow occurring in the capillary zone during steady‐state seepage. The solution to the problem can, of course, be obtained from the general equations simply by neglecting all acceleration and fixing the solid displacements at zero (or constant) values.

p Subscript w Baseline equals 0 and w Subscript n Baseline equals 0 left-parenthesis normal i period normal e period n e t zero inflow right-parenthesis

      Clearly, both conditions cannot be simultaneously satisfied and it is readily concluded that only the second is true above the area where the flow emerges. Of course, when the flow leaves the free surface, the reverse is true.