Moderne Alchemie und der Stein der Weisen. Wilfried B. Holzapfel

Чтение книги онлайн.

Читать онлайн книгу Moderne Alchemie und der Stein der Weisen - Wilfried B. Holzapfel страница 8

Автор:
Серия:
Издательство:
Moderne Alchemie und der Stein der Weisen - Wilfried B. Holzapfel

Скачать книгу

      Helen: Da spricht man doch von radioaktiven Elementen, die mehr oder weniger schnell zerfallen und so die Umgebung verseuchen.

      Der Alchemist: Weißt du, dass es auch chemische Elemente gibt, die ganz natürlich radioaktiv zerfallen, und dass Marie Curie, Pierre Curie und Henri Becquerel für die genaue Untersuchung dieser natürlichen Radioaktivität 1903 den Nobelpreis erhielten? Damit haben sie der Wissenschaft ein ganz neues Feld eröffnet. Sie erkannten, dass auch die Atomkerne teilbar sind, und dass bei der Teilung der Atomkerne neue bis dahin unbekannte Teilchen entstehen. Die Namen dieser neuen Elementarteilchen will ich hier gar nicht alle aufführen. Im Laufe der Zeit wurde daraus ein ganzer Elementarteilchen-Zoo, denn man beobachtete auch bald danach, dass Kosmische Strahlung, die aus dem Weltall auf unsere Erdatmosphäre trifft, ganze Teilchenschauer von instabilen Elementarteilchen erzeugt.

      Helen: Und was hat jetzt der Elementarteilchen-Zoo mit der Quintessenz zu tun?

      Der Alchemist: Das wirst du gleich sehen. Ohne einen groben Überblick über den Mikrokosmos mit der Welt der Elementarteilchen kann ich dir eine moderne Vorstellung von Quintessenz nicht erklären. Ihr werdet sehen, dass wir dabei auch einen ersten groben Überblick über die weite Welt der hohen Drücke gewinnen.

      Wenn ihr das moderne Weltbild verstehen wollt, wenn ihr wissen wollt, was wir im Weltall alles finden können, was im Weltall so passiert und was die Welt zusammen hält, dann muss ich euch wohl zunächst erklären, wie unser Mikrokosmos und unser Makrokosmos zusammenhängen. Erst dann können wir unsere Reise durch die Welt der hohen Drücke wirklich beginnen. Ihr werdet euch wundern, welchen exotischen Zuständen der Materie wir dort begegnen. Den meisten Menschen ist gar nicht bewusst, wie weit unsere Kenntnisse heute hier reichen! Dass der Mensch und alles was lebt, aus einer Unzahl von Zellen besteht, die etwas kleiner als 1 mm sind, ist euch nicht neu. Was gibt es für euch, was kleiner ist?

      Helen: Da kenne ich was! Die Viren, die viele Krankheiten verursachen, sind doch viel kleiner als Bakterien!

Textfeld: Abbildung 15: Der Mikrokosmos mit typischen Längenmaßen

      Der Alchemist: Ja, sie sind etwa nur ein Tausendstel so groß. Typische Durchmesser der Viren sind kleiner als 1 Mikrometer oder, anders gesagt, kleiner als ein Millionstel Meter. In mancher Hinsicht sind diese Viren nichts anderes als Riesenmoleküle und typische Moleküle sind noch einmal tausendmal kleiner. Wenn ich so weiter mache, verliert ihr bald den Überblick! Das nächste Bild 15 kann euch dabei wohl helfen! Wenn man die Länge ganz kleiner Dinge genau benennen will, braucht man für Längen unter einem Millimeter noch andere Namen und eine andere Schreibweise für noch kleinere Längen. Für die Nullen vom Tausendstel, Millionstel und noch kleineren Brüchen nimmt man dann einfach negative Hochzahlen an der Zehn wie hier im Bild 15 am rechten Rand.

      Diese Hochzahlen entsprechen dem Potenzieren der Alchemisten. Man nennt sie daher oft auch Zehnerpotenzen! Bei Bruchteilen sind es negative Zehnerpotenzen. Als Bruchteile eines Meters verwendet man nicht nur Millimeter (1 mm = 10-3 m), Mikrometer (1 μm = 10-6 m), und Nanometer (1 nm = 10-9 m), sondern auch noch so komische Größen wie Pikometer (1 pm = 10-12 m), Femtometer (1 fm = 10-15 m) und Attometer (1 am = 10-18 m). Mit diesen Längenmaßen könnt ihr zum Beispiel sagen, dass einfache Moleküle einige Nanometer groß sind und die Atome typischerweise einige 100 Pikometer.

      Die Durchmesser der Atomkerne kennt man auch noch recht gut. Die liegen im Bereich von einigen 10 fm = 10-14 m. Vom Elektron wird oft behauptet, dass es kleiner als ein Zehntel Attometer (< 0,1 am = 10-19 m) ist. Da muss man aber vorsichtig sein. Es gibt da zwar ein berühmtes Bohrsches Atommodell aus den Anfängen der Atomphysik, in dem ganz winzige Elektronen den Atomkern umkreisen, ähnlich wie die Planeten die Sonne mit viel leerem Raum dazwischen und dieses Bild vom Atombau sieht man heute noch sehr oft, obwohl es in wesentlichen Punkten wirklich falsch ist. Im Unterschied zum Makrokosmos, wo man von punktförmigen Teilchen redet, muss man im Mikrokosmos die Elektronen eher als so etwas wie eine Nebelwolke betrachten. Die Physiker sprechen dann von Unschärfe und vom Welle-Teilchen-Dualismus. Für unser Bild hier ist nur wichtig, dass diese winzigen Elektronen bei aller Unschärfe die Größe der Atome bestimmen. Kleinere Durchmesser von etwa 1 fm = 10-15 m findet man aber bei den Bausteinen der Kerne, beim Proton und dem Neutron. Selbst diese Teilchen zeigen noch viel innere Struktur, die man noch kleineren Teilchen, den Quarks zuschreibt, die dann vielleicht gerade nochmal Durchmesser von 1 am = 10-18 m besitzen. Schließlich wird noch behauptet, dass man bei der Planck-Länge von 10-35 m in einem Bereich angekommen ist, wo kleinere Längen keinen Sinn mehr ergeben. Damit sind wir jetzt aber auch am unteren Ende von Bild 15 angelangt.

      Helen: Kann sich das irgendjemand vorstellen? Ist das nicht alles nur Fantasie?

      Der Alchemist: Da steckt schon gut Physik dahinter! Zunächst wurde die Existenz von Quarks 1964 nur aus theoretischen Überlegungen von dem amerikanischen Physiker Murray Gell-Mann postuliert, um den damals schon bekannten großen "Teilchenzoo" der vielen Elementarteilchen besser zu verstehen. Schon 1969, nur fünf Jahre später, erhielt er für seine Überlegungen den Nobelpreis, da viele Rätsel mit diesem Modell gelöst wurden. In diesem Bild, bei Wikipedia unter Quark (Physik), stellt man sich vor, dass Proton und Neutron jeweils aus drei Quarks bestehen, und dass Gluonen als Klebstoff diese Quarks verbinden. Schließlich ist in diesem Bild noch zu berücksichtigen, dass in diesem Mikrokosmos die Kräfte auch als Teilchen beschrieben werden, so dass im Zoo der Elementarteilchen neben den "schweren" Teilchen, den Teilchen mit Masse, die man als Fermionen bezeichnet, auch noch ganz leichte, "masselose" Teilchen für die Kräfte auftauchen. Die Kräfte sind in dieser Quantenphysik nicht mehr in beliebig kleine Portionen aufteilbar, sonder diskret schließlich durch Teilchen zu beschreiben. Diese "Kraftteilchen" für die verschiedenen Kräfte nennt man zusammenfassend auch Bosonen. Der Teilchenzoo hat so nicht nur verschiedene Teilchentypen sondern auch ganze Familien mit besonderen Eigenschaften. Grob habe ich das für euch im nächsten Bild 16 zusammen gestellt.

      Helen: Mir brummt der Kopf von allen diesen Teilchen!

      Der Alchemist: Nur keine Angst! Von diesem ganzen Teilchenzoo braucht ihr euch hier nur ein paar Beobachtungen zu merken. Ihr habt es vielleicht nicht bemerkt, aber die Bindung der negativ geladenen Elektronen (e-) an die positiv geladenen Kerne wird allein von elektromagnetischen Kräften bewirkt, die ihr vom elektrischen Strom, von Elektromotoren und von den Magnethaltern in der Küche kennt. Ganz anders sieht es in den Atomkernen aus. Warum fliegen die positiv geladenen Protonen (p+) der Kerne nicht einfach auseinander, und was hält die neutralen Neutronen (n) überhaupt in den Kernen? Da muss es doch besondere ganz andere Kernkräfte zwischen diesen Nukleonen, diesen Kernteilchen geben, die im Bereich der Kerne stärker sind als die elektrische Abstoßung der

Скачать книгу