Muography. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Muography - Группа авторов страница 23
28 Kazahaya, K., Shinohara, H., & Saito, G. (1994). Excessive degassing of Izu‐Oshima volcano: magma convection in a conduit. Bulletin of Volcanology, 56, 207–216. https://doi.org/10.1007/BF00279605
29 Kazahaya, R., & Mori, T. (2016). Interpretations for magmatic process and eruptive phenomena by way of volcanic gas studies. Bulletin of the Volcanological Society of Japan, 61, 155–170. https://doi.org/10.18940/kazan.61.1_155
30 Komazawa, M., Nawa, K., Murata, Y., Makino, M., Morijiri, R., Hiroshima, T., et al. (2005). Gravity map of Yaku Shima district (Bouguer anomalies). Gravity map series 22. Geological Survey of Japan, AIST.
31 Koyama, M., & Umino, S. (1991). Why does the Higashi‐Izu monogenetic volcano group exist in the Izu Peninsula?: Relationships between Late Quaternary volcanism and tectonics in the northern tip of the Izu‐Bonin arc. Journal of Physics of the Earth, 39, 391–420. https://doi.org/10.4294/jpe1952.39.391
32 Kusagaya T., & Tanaka H. K. M. (2015a). Development of the very long‐range cosmic ray muon radiographic imaging technique to explore the internal structure of an erupting volcano, Shinmoe‐dake. Japan. Geoscientific Instrumentation, Methods and Data Systems, 4, 215–226. https://doi.org/10.5194/gi‐4‐215‐2015
33 Kussat, N. H., Chadwell, C. D., & Zimmerman, R. (2005). Absolute positioning of an autonomous underwater vehicle using GPS and acoustic measurements. IEEE Journal of Oceanic Engineering, 30, 153–164. https://doi.org/10.1109/JOE.2004.835249
34 Kusagaya, T. (2017). Reduction of the background noise in muographic images for detecting magma dynamics in an active volcano. Ph.D. Thesis, The University of Tokyo, Retrieved from https://repository.dl.itc.u‐tokyo.ac.jp/?action=pages_view_main&active_action=repository_view_main_item:detail&item:id=52347&item:no=1&page_id=28&block_id=31
35 Kusagaya T., & Tanaka H. K. M. (2015b). Muographic imaging with a multi‐layered telescope and its application to the study of the subsurface structure of a volcano. Proceedings of the Japan Academy Series B 91, 501–510. https://doi.org/10.2183/pjab.91.501
36 Matsuno, S., Kajino, F., Kawashima, Y., Kitamura, T., Mitsui, K., Muraki, Y., et al. (1984). Cosmic‐ray muon spectrum up to 20 TeV at 89° zentih angle. Physical Review D, 29, 1–23. https://doi.org/10.1103/PhysRevD.29.1
37 Matsushima, J. (2019). Biogenic gas in Tokyo Bay and Bessi Copper Mine. Muographers 2019 Conference, 09 September 10 September, 24 September – 26, September, Tokyo, Japan,
38 Nagamine, K., Iwasaki, M., Shimomura, K., & Ishida, K. (1995). Method of probing inner‐structure of geophysical substance with the horizontal cosmic‐ray muons and possible application to volcanic eruption prediction. Nuclear Instruments and Methods in Physics Research Section A, 356, 585–595. https://doi.org/10.1016/0168‐9002(94)01169‐9
39 Nawa, K., Fukao, Y., Shichi, R., & Murata, Y. (1997). Inversion of gravity data to determine the terrain density distribution in southwest Japan. Journal of Geophysical Research, 102, 27703–27719. https://doi.org/10.1029/97JB02543
40 Nomura, Y., Nemoto, M., Hayashi, N., Hanaoka, S., Murata, M., Yoshikawa, T., et al. (2020). Pilot study of eruption forecasting with muography using convolutional neural network, Scientific Reports 10, 5272. https://doi.org/10.1038/s41598‐020‐62342‐y
41 Oláh, L., Tanaka, H. K. M., Ohminato, T., Hamar, G., & Varga, D. (2019). Plug formation imaged beneath the active craters of Sakurajima Volcano with muography. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL084784
42 Oláh, L., Tanaka, H. K. M., Ohminato, T., & Varga, D. (2018). High‐definition and low‐noise muography of the Sakurajima volcano with gaseous tracking detectors. Scientific Reports, 8, 3207. https://doi.org/10.1038/s41598‐018‐21423‐9
43 Oppenheimer, C., Lomakina, A. S., Kyle, P. R., Kingsbury, N. G., & Boichu, M. (2009). Pulsatory magma supply to a phonolite lava lake. Earth and Planetary Science Letters, 284, 392–398. https://doi.org/10.1016/j.epsl.2009.04.043
44 Particle Data Group (2020). The Review of Particle Physics. Progress of Theoretical and Experimental Physics 2020, 083C01.
45 Petrova, O. (2019). Particle and Cosmology, 16th Baksan School on Astroparticle Physics. East‐west asymmetry effect in atmospheric muon flux in the Far Detector of NOvA, Retrieved from http://www.inr.ac.ru/~school/lectures/Petrova.pdf
46 Prettyman, T. H., Koontz, S. L., Pinsky, L. S., Empl, A. M, Ittlefehldt, D. W., Reddell, B. D., & Sykes, M. V. (2013). NIAC Phase I Final Report, The National Aeronautics and Space Administration. Deep Mapping of Small Solar System Bodies with Galactic Cosmic Ray Secondary Showers (Grant Number NNX13AQ94G). Retrieved from https://www.nasa.gov/sites/default/files/files/Prettyman_2013_PhI_MuonDeepMapping.pdf
47 Saftoiu, A., Bercuci, A., Brancus, M., Duma, M., Haungs, A., Mitrica, B., et al. (2012). Measurements of the cosmic muon flux with the WILLI detector as a source of information about solar events. Romanian Journal of Physics, 56, 664–672.
48 Shinohara H., & Tanaka H. K. M. (2012). Conduit magma convection of a rhyolitic magma: Constraints from cosmic‐ray muon radiography of Iwodake, Satsuma‐Iwojima volcano, Japan. Earth and Planetary Science Letters, 349–350, 87–97. https://doi.org/10.1016/j.epsl.2012.07.002
49 Shinohara, H., & Witter, J. (2005). Volcanic gases emitted during mild Strombolian activity of Villarrica volcano, Chile. Geophysical Research Letters, 32, L20308. https://doi.org/10.1029/2005GL024131
50 Shinohara, H., Aiuppa, A., Giudice, G., Gurrieri, S., & Liuzzo, M. (2008) Variation of H2O/CO2 and CO2/SO2 ratios of volcanic gases discharged by continuous degassing of Mount Etna volcano, Italy. Journal of Geophysical Research, 113, B09203. https://doi.org/10.1029/2007JB005185
51 Smart, D. F., & Shea, M. A. (1994). Geomagnetic cutoffs: a review for space dosimetry applications. Advances in Space Research, 14(10), 787–796. https://doi.org/10.1016/0273‐1177(94)90543‐6
52 Taira,