Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Чтение книги онлайн.

Читать онлайн книгу Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - Savo G. Glisic страница 99

Artificial Intelligence and Quantum Computing for Advanced Wireless Networks - Savo G. Glisic

Скачать книгу

= xu holds, if u is the i‐th neighbor of n(νn(u) = i); and yi = x0 , for some predefined null state x0 , if there is no i‐th neighbor.

      For nonpositional graphs, it is useful to replace function fw of Eq. (5.74) with

      Computation of the state: Banach’s fixed‐point theorem does not only ensure the existence and the uniqueness of the solution of Eq. (5.74), but it also suggests the following classic iterative scheme for computing the state:

Schematic illustration of graph (on the top, left), the corresponding encoding network (top right), and the network obtained by unfolding the encoding network (at the bottom).The nodes (the circles) of the graph are replaced, in the encoding network, by units computing fw and gw (the squares).

      The learning algorithm is based on a gradient‐descent strategy and is composed of the following steps:

      1 The states xn(t) are iteratively updated by Eq. (5.78) until at time T they approach the fixed‐point solution of Eq. (5.75): x(T) ≈ x.

      2 The gradient ∂ew(T)/∂w is computed.

      3 The weights w are updated according to the gradient computed in Step 2.

      Backpropagation through time consists of carrying out the traditional backpropagation step (see Chapter 3) on the unfolded network to compute the gradient of the cost function at time T with respect to all the instances of fw and

Скачать книгу