Genomic and Epigenomic Biomarkers of Toxicology and Disease. Группа авторов
Чтение книги онлайн.
Читать онлайн книгу Genomic and Epigenomic Biomarkers of Toxicology and Disease - Группа авторов страница 22
26 Clark, P.M., Loher, P., Quann, K., Brody, J., Londin, E.R., and Rigoutsos, I. (2014). Argonaute CLIP-Seq reveals miRNA targetome diversity across tissue types. Sci. Rep. 4: 5947.
27 Condrat, C.E., Thompson, D.C., Barbu, M.G., Bugnar, O.L., Boboc, A., Cretoiu, D., Suciu, N., Cretoiu, S.M., and Voinea, S.C. (2020). miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 9 (2): 276.
28 Costa, C., Teodoro, M., Rugolo, C.A., Alibrando, C., Giambo, F., Briguglio, G., and Fenga, C. (2020). MicroRNAs alteration as early biomarkers for cancer and neurodegenerative diseases: New challenges in pesticides exposure. Toxicol. Rep. 7: 759–767.
29 Deng, Q., Huang, S., Zhang, X., Zhang, W., Feng, J., Wang, T., Hu, D., Guan, L., Li, J., Dai, X., Deng, H., Zhang, X., and Wu, T. (2014). Plasma microRNA expression and micronuclei frequency in workers exposed to polycyclic aromatic hydrocarbons. Environ. Health Perspect. 122: 719–725.
30 Ding, E., Zhao, Q., Bai, Y., Xu, M., Pan, L., Liu, Q., Wang, B., Song, X., Wang, J., Chen, L., and Zhu, B. (2016). Plasma microRNAs expression profile in female workers occupationally exposed to mercury. J. Thorac. Dis. 8: 833–841.
31 Dutta, R.K., Chinnapaiyan, S., and Unwalla, H. (2019). Aberrant microRNAomics in pulmonary complications: Implications in lung health and diseases. Mol. Ther. Nucleic Acids 18: 413–431.
32 Farina, N.H., Wood, M.E., Perrapato, S.D., Francklyn, C.S., Stein, G.S., Stein, J.L., and Lian, J.B. (2014). Standardizing analysis of circulating microRNA: Clinical and biological relevance. J. Cell. Biochem. 115: 805–811.
33 Finicelli, M., Squillaro, T., Galderisi, U., and Peluso, G. (2020). Micro-RNAs: Crossroads between the exposure to environmental particulate pollution and the obstructive pulmonary disease. Int. J. Mol. Sci. 21 (19): 7221.
34 Fossati, S., Baccarelli, A., Zanobetti, A., Hoxha, M., Vokonas, P.S., Wright, R.O., and Schwartz, J. (2014). Ambient particulate air pollution and microRNAs in elderly men. Epidemiology 25: 68–78.
35 Fry, R.C., Rager, J.E., Bauer, R., Sebastian, E., Peden, D.B., Jaspers, I., and Alexis, N.E. (2014). Air toxics and epigenetic effects: Ozone altered microRNAs in the sputum of human subjects. Am. J. Physiol. Lung Cell Mol. Physiol. 306: L1129–L1137.
36 Gant, T.W., Sauer, U.G., Zhang, S.D., Chorley, B.N., Hackermuller, J., Perdichizzi, S., Tollefsen, K.E., Van Ravenzwaay, B., Yauk, C., Tong, W., and Poole, A. (2017). A generic Transcriptomics Reporting Framework (TRF) foromics data processing and analysis. Regul. Toxicol. Pharmacol. 91 (Suppl 1): S36–S45.
37 Gao, S., Lin, P.I., Mostofa, G., Quamruzzaman, Q., Rahman, M., Rahman, M.L., Su, L., Hsueh, Y.M., Weisskopf, M., Coull, B., and Christiani, D.C. (2019). Determinants of arsenic methylation efficiency and urinary arsenic level in pregnant women in Bangladesh. Environ Health 18: 94.
38 Giraldez, M.D., Spengler, R.M., Etheridge, A., Godoy, P.M., Barczak, A.J., Srinivasan, S., De Hoff, P.L., Tanriverdi, K., Courtright, A., Lu, S., Khoory, J., Rubio, R., Baxter, D., Driedonks, T.A.P., Buermans, H.P.J., Nolte-’t Hoen, E.N.M., Jiang, H., Wang, K., Ghiran, I., Wang, Y.E., Van Keuren-Jensen, K., Freedman, J.E., Woodruff, P.G., Laurent, L.C., Erle, D.J., Galas, D.J., and Tewari, M. (2018). Comprehensive multi-center assessment of small RNA-seq methods for quantitative miRNA profiling. Nat. Biotechnol. 36: 746–757.
39 Git, A., Dvinge, H., Salmon-Divon, M., Osborne, M., Kutter, C., Hadfield, J., Bertone, P., and Caldas, C. (2010). Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA 16: 991–1006.
40 Gjorgjieva, M., Sobolewski, C., Dolicka, D., Correia De Sousa, M., and Foti, M. (2019). miRNAs and NAFLD: From pathophysiology to therapy. Gut 68: 2065–2079.
41 Gu, S. and Kay, M.A. (2010). How do miRNAs mediate translational repression? Silence 1: 11.
42 Guduric-Fuchs, J., O’Connor, A., Camp, B., O’Neill, C.L., Medina, R.J., and Simpson, D.A. (2012). Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genom. 13: 357.
43 Guida, M., Marra, M.L., Zullo, F., Guida, M., Trifuoggi, M., Biffali, E., Borra, M., De Mieri, G., D’Alessandro, R., and De Felice, B. (2013). Association between exposure to dioxin-like polychlorinated biphenyls and miR-191 expression in human peripheral blood mononuclear cells. Mutat. Res. 753: 36–41.
44 Guo, X., Yang, Q., Zhang, W., Chen, Y., Ren, J., and Gao, A. (2019). Associations of blood levels of trace elements and heavy metals with metabolic syndrome in Chinese male adults with microRNA as mediators involved. Environ. Pollut. 248: 66–73.
45 Hagiwara, K., Katsuda, T., Gailhouste, L., Kosaka, N., and Ochiya, T. (2015). Commitment of Annexin A2 in recruitment of microRNAs into extracellular vesicles. FEBS Lett. 589: 4071–4078.
46 Hanna, J., Hossain, G.S., and Kocerha, J. (2019). The potential for microRNA therapeutics and clinical research. Front Genet. 10: 478.
47 Harrill, A.H., Mccullough, S.D., Wood, C.E., Kahle, J.J., and Chorley, B.N. (2016). MicroRNA biomarkers of toxicity in biological matrices. Toxicol. Sci. 152: 264–272.
48 Herberth, G., Bauer, M., Gasch, M., Hinz, D., Roder, S., Olek, S., Kohajda, T., Rolle-Kampczyk, U., Von Bergen, M., Sack, U., Borte, M., Lehmann, I., and Lifestyle and Environmental Factors and Their Influence on Newborns Allergy Risk Study Group (2014). Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J. Allergy Clin. Immunol. 133: 543–550.
49 Hill, M. and Tran, N. (2021). miRNA interplay: Mechanisms and consequences in cancer. Dis. Model Mech. 14 (4): dmm047662.
50 Holman, N.S., Mosedale, M., Wolf, K.K., Lecluyse, E.L., and Watkins, P.B. (2016). Subtoxic alterations in hepatocyte-derived exosomes: An early step in drug-induced liver injury? Toxicol. Sci. 151: 365–375.
51 Huang, Y., Yan, Y., Xv, W., Qian, G., Li, C., Zou, H., and Li, Y. (2018). A new insight into the roles of miRNAs in metabolic syndrome. Biomed. Res. Int. 2018: 7372636.
52 Isakova, A., Fehlmann, T., Keller, A., and Quake, S.R. (2020). A mouse tissue atlas of small noncoding RNA. Proc. Natl. Acad. Sci. USA 117: 25634–25645.
53 Izzotti, A. and Pulliero, A. (2014). The effects of environmental chemical carcinogens on the microRNA machinery. Int. J. Hyg. Environ. Health 217: 601–627.
54 Janas, T., Janas, M.M., Sapon, K., and Janas, T. (2015). Mechanisms of RNA loading into exosomes. FEBS Lett. 589: 1391–1398.
55 Janas, T., Janas, T., and Yarus, M. (2006). Specific RNA binding to ordered phospholipid bilayers. Nucleic Acids Res. 34: 2128–2136.
56 Jenike, A.E. and Halushka, M.K. (2021). miR-21: A non-specific biomarker of all maladies. Biomark Res. 9: 18.
57 Jin, Y., Wong, Y.S., Goh, B.K.P., Chan, C.Y., Cheow, P.C., Chow, P.K.H., Lim, T.K.H., Goh, G.B.B., Krishnamoorthy, T.L., Kumar, R., Ng, T.P., Chong, S.S., Tan, H.H., Chung, A.Y.F., Ooi, L., Chang, J.P.E., Tan, C.K., and Lee, C.G.L. (2019). Circulating microRNAs as potential diagnostic and prognostic biomarkers in hepatocellular