Introduction to Differential Geometry with Tensor Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Introduction to Differential Geometry with Tensor Applications - Группа авторов страница 13

Introduction to Differential Geometry with Tensor Applications - Группа авторов

Скачать книгу

rel="nofollow" href="#fb3_img_img_c4157d94-325c-526e-b277-8ecd804145f9.jpg" alt="image"/> and image.

      Proof: We shall prove this result by taking the range of the indices from 1 to 2, but the results hold, in general, when they range from 1 to n.

      We get image. Hence, image.

image

      Taking the determinant of both sides, we get image, as we know |AB| = |A||B|.

      Property 1.6.2. If image, then, image and image, where (bik)T is the transpose of image

      Proof: We have image, hence, image.

      Therefore,

image

      Taking determinants of both sides, we get image (since │AT│ = │A│).

image

      If the cofactor of aij is represented by Akj, it is expressed by the equation:

image

      If we divide the cofactor Akj of the element of akj by the value a of the determinant, we form the normalized cofactor, represented by:

image

      The above equation becomes

image

      Property 1.6.4. Let us consider a system of n linear equations:

image

      for n unknown xi, where image

      image, where image is cofactor of image.

      image, which is called Cramer’s Rule, for the solution of n linear equations.

      Property 1.6.5. Considering the transformation zi = zi(yk) and yi = yi(xk), let N function zi(yk) be of independent N variables of yk so that image.

      Here, N equation zi = zi(yk) is solvable for the z’s in terms terms of yis.

      Now, we have by the chain rule of differentiation that

image

      Taking the determinant, we get

      (1.11) image

image

      Or

image

      This implies that the Jacobian of Direct Transformation is the reciprocal of the Jacobian of Inverse Transformation.

      Consider the determinant image and let the element image be a function of x1, x2xn, etc. Let image be the cofactor of image of det a.

      Then, the derivative of a with respect to x1 is given by

image

      Example 1.8.1. Write the terms contained in S = aijxixj taking n = 3.

      Solution: Since the index i (or j) occurs both in subscript and superscript, we first sum on i from 1 to 3, then on j from 1 to 3.

image

      Example 1.8.2. Express the sum of

Скачать книгу