Vibroacoustic Simulation. Alexander Peiffer

Чтение книги онлайн.

Читать онлайн книгу Vibroacoustic Simulation - Alexander Peiffer страница 11

Vibroacoustic Simulation - Alexander Peiffer

Скачать книгу

Damped harmonic oscillator with initial conditions a) and external force excitation b). Source: Alexander Peiffer.

      1.1.1 Homogeneous Solutions

      Without external excitation as shown in Figure 1.1 a) the motion depends on the initial conditions at time t = 0 with the displacement u(0)=u0 and velocity vx(0)=vx0. The damping is supposed to be viscous, thus proportional to the velocity Fxv=−cvu˙. The equation of motion

(1.1)

      

(1.2)

      with the two solutions

      Hence,

      with B1 and B2 depending on the initial conditions. The root in Equation (1.3) is zero when cv equals 4mks. This specific value is called the critical viscous damping damping

       c Subscript v c Baseline equals StartRoot 4 m k Subscript s Baseline EndRoot (1.5)

      We use the following definitions:

      ω0 is the natural angular frequency, ζ is ratio of the viscous-damping to the critical viscous-damping. There are additional expressions for the period and frequency

       StartLayout 1st Row 1st Column f 0 2nd Column equals StartFraction omega 0 Over 2 pi EndFraction 3rd Column upper T 0 4th Column equals StartFraction 1 Over f 0 EndFraction EndLayout (1.7)

      where f0 is the natural frequency and T0 the oscillation period. Equations (1.1)–(1.3) can now be written as

       StartLayout 1st Row ModifyingAbove u With two-dots plus 2 zeta omega 0 ModifyingAbove u With dot plus omega 0 squared u equals 0 EndLayout (1.8)

       StartLayout 1st Row s squared plus 2 zeta omega 0 s plus omega 0 squared equals 0 EndLayout (1.9)

      The problem falls into three cases:

       ζ > 1 overdamped

       ζ < 1 underdamped

       ζ = 1 critically damped.

      1.1.2 The Overdamped Oscillator (ζ > 1)

      Both roots in Equation (1.10) are real, distinct and negative. The motion is called overdamped because introducing this into Equation (1.4) gives a sum of decaying exponential functions:

       u left-parenthesis t right-parenthesis equals upper B 1 e Superscript left-parenthesis negative zeta plus StartRoot zeta squared minus 1 EndRoot right-parenthesis omega 0 t Baseline plus upper B 2 e Superscript left-parenthesis negative zeta minus StartRoot zeta squared minus 1 EndRoot right-parenthesis omega 0 t (1.11)

       upper B Subscript 1 slash 2 Baseline equals plus-or-minus StartFraction u 0 omega 0 left-parenthesis zeta plus-or-minus StartRoot zeta squared minus 1 EndRoot right-parenthesis plus v Subscript x Baseline 0 Baseline Over 2 omega 0 StartRoot zeta squared minus 1 EndRoot EndFraction (1.12)

      Figure 1.2 Decaying components of the overdamped oscillator. Source: Alexander Peiffer.

      1.1.3 The Underdamped Oscillator (ζ < 1)

      Here, the roots are complex conjugates and the solution of Equation (1.10) becomes:

       StartLayout 1st Row u left-parenthesis t right-parenthesis equals e Superscript minus zeta omega 0 t Baseline left-parenthesis upper B 1 e Superscript j left-parenthesis 1 minus zeta squared right-parenthesis Super Superscript 1 slash 2 Superscript omega 0 t Baseline plus upper B 2 e Superscript minus j left-parenthesis 1 minus zeta squared right-parenthesis Super Superscript 1 slash 2 Superscript omega 0 t Baseline right-parenthesis EndLayout (1.13)

      

Скачать книгу