Vibroacoustic Simulation. Alexander Peiffer

Чтение книги онлайн.

Читать онлайн книгу Vibroacoustic Simulation - Alexander Peiffer страница 13

Vibroacoustic Simulation - Alexander Peiffer

Скачать книгу

alt="StartLayout 1st Row 1st Column u left-parenthesis t right-parenthesis 2nd Column equals bold-italic u e Superscript j omega t Baseline 3rd Column v Subscript x Baseline left-parenthesis t right-parenthesis 4th Column equals j omega bold-italic u e Superscript j omega t Baseline equals bold-italic v Subscript x Baseline e Superscript j omega t EndLayout"/> (1.26)

      with u and vx as complex amplitudes of the displacement and velocity, respectively. Introducing this into Equation (1.23).

      The magnitude u^ and the phase ϕ of u are:

       StartLayout 1st Row ModifyingAbove u With caret equals StartFraction ModifyingAbove upper F With caret Subscript x Baseline Over StartRoot left-parenthesis k Subscript s Baseline minus m omega squared right-parenthesis squared plus left-parenthesis c Subscript v Baseline omega right-parenthesis Subscript 2 Baseline EndRoot EndFraction EndLayout (1.29)

      At ω = 0 the static displacement amplitude is u^0=F^x/ks. Using the definitions from (1.6) and dividing u^ by u^0 gives the normalized amplitude

      and phase

      It can be shown that the maximum of u^ is at

       StartFraction omega Subscript r Baseline Over omega 0 EndFraction equals StartRoot 1 minus 2 zeta squared EndRoot (1.33)

      and the maximum value is

      with the corresponding phase

       phi Subscript r Baseline equals arc tangent left-parenthesis minus StartFraction StartRoot 1 minus 2 zeta squared EndRoot Over zeta EndFraction right-parenthesis (1.35)

      Figure 1.6 Normalized amplitude of forced harmonic oscillator. Source: Alexander Peiffer.

      Figure 1.7 Phase of forced harmonic oscillator. Source: Alexander Peiffer.

      The frequency of highest amplitude is called the amplitude resonance and it is different from the so called phase resonance with ϕ=−π2, which corresponds to the resonance of the undamped oscillator.

      1.2.2 Energy, Power and Impedance

       StartLayout 1st Row 1st Column upper E Subscript kin Baseline plus upper E Subscript pot 2nd Column equals one-half m ModifyingAbove u With dot squared plus one-half k Subscript s Baseline u squared 2nd Row 1st Column Blank 2nd Column equals one-half m omega squared ModifyingAbove u With caret squared sine squared left-parenthesis omega t right-parenthesis plus one-half k Subscript s Baseline ModifyingAbove u With caret cosine squared left-parenthesis omega t right-parenthesis 3rd Row 1st Column Blank 2nd Column equals one-half m omega squared ModifyingAbove u With caret squared left-bracket sine squared left-parenthesis omega t right-parenthesis plus cosine squared left-parenthesis omega t right-parenthesis right-bracket equals one-half m omega squared ModifyingAbove u With caret squared EndLayout (1.36)

      and is constant, but spring and mass exchange energy twice over one period T0.

      Figure 1.8 Kinetic and potential energy of the harmonic oscillator. Source: Alexander Peiffer.

       StartLayout 1st Row 1st Column u Subscript ms Superscript 2 Baseline equals mathematical left-angle u squared mathematical right-angle Subscript upper T Baseline 2nd Column equals StartFraction 1 Over upper T EndFraction integral Subscript 0 Superscript upper T Baseline u squared left-parenthesis t right-parenthesis d t 3rd Column u Subscript rms Baseline equals StartRoot mathematical left-angle u squared mathematical right-angle Subscript upper T Baseline EndRoot EndLayout (1.37)

      In

Скачать книгу