Arbeitsbuch zu Atkins, de Paula, Keeler Physikalische Chemie. James J. Keeler

Чтение книги онлайн.

Читать онлайн книгу Arbeitsbuch zu Atkins, de Paula, Keeler Physikalische Chemie - James J. Keeler страница 46

Автор:
Жанр:
Серия:
Издательство:
Arbeitsbuch zu Atkins, de Paula, Keeler Physikalische Chemie - James J. Keeler

Скачать книгу

Die Variation des chemischen Potenzials mit der Temperatur (bei konstantem Druck) ist durch Gl. (4.3a) gegeben, (∂μ/∂T)p = − Sm. Da die molare Entropie für alle reinen Substanzen stets eine positive Größe ist, ist die Steigung der Änderung des chemischen Potenzials aufgrund einer Temperaturänderung stets negativ. Das bedeutet: das chemische Potenzial nimmt bei einer Temperaturerhöhung grundsätzlich ab.

      D4.2.3 Bei der dynamischen Differenzialkalorimetrie (DSC) wird die Wärmekapazität bei konstantem Druck (Cp) als Funktion der Temperatur gemessen, indem man die Probe elektrisch aufheizt und sie mit einer Referenz vergleicht (siehe Abschn. 2.3.4 des Lehrbuchs für eine ausführlichere Beschreibung der DSC). Phasenübergänge geben sich durch eine Diskontinuität bei Auftragung von Cp als Funktion der Temperatur zu erkennen. Die üblichen Phasenübergänge - wie beispielsweise Schmelzen oder Verdampfen - besitzen „latente“ Enthalpien, d. h. von null verschiedene Enthalpieänderungen bei konstanter Temperatur. Diese Übergänge verraten sich daher durch unendliche Werte von Cp an diesem Punkt. Bei Übergängen zweiter Ordnung ist Cp ebenfalls nicht stetig, wird aber nicht unendlich. Beide Varianten fallen in einem ansonsten stetigen Verlauf von Cp als Funktion der Temperatur sofort auf.

      Leichte Aufgaben

      L4.2.1a Die Variation des chemischen Potenzials mit der Temperatur (bei konstantem Druck) ist durch Gl. (4.3a) gegeben, (∂μ/∂T)p = − Sm Für eine endliche, messbare Änderung der Temperatur gilt Δμ = − SmΔT (vorausgesetzt, dass Sm im betrachteten Temperaturbereich konstant ist). Somit gilt im vorliegenden Fall

image

      In beiden Fällen reduzieren sich die chemischen Potenziale aufgrund der Temperaturerhöhung; im Falle der Flüssigkeit ist diese Abnahme stärker ausgeprägt. Da die beiden Phasen (Wasser und Eis) am Normalschmelzpunkt im Gleichgewicht vorlagen, folgt: die Flüssigkeit ist bei der neuen, erhöhten Temperatur die stabilere Phase. Aus diesem Grund läuft der Schmelzvorgang freiwillig ab.

image

      L4.2.3a Die Variation des chemischen Potenzials mit dem Druck (bei konstanter Temperatur) ist durch Gl. (4.3b) gegeben, (∂μ/∂p)T = Vm. Für eine endliche, messbare Änderung der Temperatur gilt Δμ = VmΔp (vorausgesetzt, dass Vm im betrachteten Temperaturbereich konstant ist). Das molare Volumen ist durch Vm = M/ρ gegeben, wobei im vorliegenden Fall M die Molmasse von Kupfer und ρ (rho) die Dichte dieses Metalls ist. Somit gilt

image

      Dabei haben wir 1 Pa m3 = 1 J verwendet. Außerdem haben wir angenommen, dass die Probe inkompressibel ist.

      L4.2.4a Der Effekt eines ausgeübten Drucks Δp auf den Dampfdruck einer Flüssigkeit ist durch Gl. (4.4) gegeben,

image

      Für den Dampfdruck von Wasser unter den gegebenen Bedingungen erhalten wir

image

      L4.2.5a Die Beziehung zwischen dem Druck und der Temperatur entlang der Phasengrenzlinie fest/flüssig ist durch Gl. (4.9) gegeben,

image

      Diesen Ausdruck stellen wir nach ΔSmH um und setzen die gegebenen Werte ein, p* = 1,00 atm, T* = 350,75 K, p = 100 atm und T = 351,26 K. Wir erhalten für die Schmelzenthalpie

image

      Die Entropieänderung bei einem Phasenübergang ist durch Gl. (3.16) gegeben, ΔTransS = ΔTransH/TTrans, wobei TTrans die Übergangstemperatur ist. Am Schmelzpunkt erhalten wir damit für die Schmelzentropie des beschriebenen Festkörpers

image image

      Wir nehmen an, dass der Dampf sich ideal verhält; außerdem soll die Verdampfungsenthalpie ΔVH nicht von der Temperatur abhängen. Nach Umstellen des obigen Ausdrucks nach T können wir schreiben:

image

      L4.2.7a Die Clausius-Clapeyron-Gleichung (Gl. (4.11)) lautet

image

      Wir stellen nach ΔVH um und differenzieren den Ausdruck für ln p. Es spielt keine Rolle, dass der Druck hier in der Einheit Torr angegeben ist, denn wir benötigen lediglich die (dimensionslose) Steigung von ln p. Somit erhalten wir für die Verdampfungsenthalpie der Flüssigkeit

image

       L4.2.8a

      1 (i) Die Clausius-Clapeyron-Gleichung (Gl. (4.11)) lautetWir stellen nach ΔVH um und differenzieren den Ausdruck für ln p; dabei müssen wir beachten, dass ln x = (ln 10) log x ist. Es spielt keine Rolle, dass der Druck hier in der Einheit Torr angegeben ist, denn wir benötigen lediglich die (dimensionslose) Steigung von ln p. Somit erhalten wir für die Verdampfungsenthalpie von Benzol

      2 (ii) Der Normalsiedepunkt entspricht derjenigen Temperatur, bei der der Dampfdruck 1 atm = 760 Torr beträgt. Wir stellen die in der Aufgabenstellung gegebene Formel log(p/Torr) = 7,960 − (1780 K)/T nach T um und setzen einen Druck von p = 760 Torr ein, und für den Normalsiedepunkt von Benzol ergibt sichBeachten Sie, dass diese Temperatur außerhalb des Bereichs von 10 °C bis 30 °C liegt, für den bekannt ist, dass die empirische Formel für log(p/Torr) aus der Aufgabenstellung gültig ist. Bei diesem Ergebnis handelt sich also lediglich um eine Näherung.

image

      Die Größe ΔSmV lässt sich mithilfe der Beziehung Vm = M/ρ bestimmen, wobei M die Molmasse und ρ (rho) die Dichte der untersuchten

Скачать книгу