Properties for Design of Composite Structures. Neil McCartney

Чтение книги онлайн.

Читать онлайн книгу Properties for Design of Composite Structures - Neil McCartney страница 24

Properties for Design of Composite Structures - Neil McCartney

Скачать книгу

of high temperature to regions of lower temperature.

      2.12 Equilibrium Equations

      When a continuous medium is in mechanical equilibrium, the equations of motion (2.109) reduce to the form

      It is useful express the equilibrium equations (2.119) in terms of three coordinate systems that will be used later in this book. In terms of a set of Cartesian coordinates (x1,x2,x3) the equilibrium equations (2.119) may be expressed as the following three independent equilibrium equations (see, for example, [3])

      StartFraction partial-differential sigma 12 Over partial-differential x 1 EndFraction plus StartFraction partial-differential sigma 22 Over partial-differential x 2 EndFraction plus StartFraction partial-differential sigma 23 Over partial-differential x 3 EndFraction equals 0 comma(2.121)

      where the stress tensor is symmetric such that

      When using cylindrical polar coordinates (r,θ,z) such that

      x 1 equals r cosine theta comma x 2 equals r sine theta comma x 3 equals z comma(2.124)

      the equilibrium equations (2.120)–(2.122) are written as

      StartFraction partial-differential sigma Subscript r r Baseline Over partial-differential r EndFraction plus StartFraction 1 Over r EndFraction StartFraction partial-differential sigma Subscript r theta Baseline Over partial-differential theta EndFraction plus StartFraction partial-differential sigma Subscript r z Baseline Over partial-differential z EndFraction plus StartFraction sigma Subscript r r Baseline minus sigma Subscript theta theta Baseline Over r EndFraction equals 0 comma(2.125)

      StartFraction partial-differential sigma Subscript r z Baseline Over partial-differential r EndFraction plus StartFraction 1 Over r EndFraction StartFraction partial-differential sigma Subscript theta z Baseline Over partial-differential theta EndFraction plus StartFraction partial-differential sigma Subscript z z Baseline Over partial-differential z EndFraction plus StartFraction sigma Subscript r z Baseline Over r EndFraction equals 0 comma(2.127)

      where the stress tensor is symmetric such that

      sigma Subscript r theta Baseline equals sigma Subscript theta r Baseline comma sigma Subscript r z Baseline equals sigma Subscript z r Baseline comma sigma Subscript theta z Baseline equals sigma Subscript z theta Baseline period(2.128)

      When using spherical polar coordinates (r,θ,ϕ) such that

      x 1 equals r sine theta cosine phi comma x 2 equals r sine theta sine phi comma x 3 equals r cosine theta comma(2.129)

      the equilibrium equations (2.120)–(2.122) are written as

      StartFraction partial-differential sigma Subscript r r Baseline Over partial-differential r EndFraction zero width space zero width space plus StartFraction 1 Over r EndFraction StartFraction partial-differential sigma Subscript r theta Baseline Over partial-differential theta EndFraction plus StartFraction 1 Over r s i n theta EndFraction StartFraction partial-differential sigma Subscript r phi Baseline Over partial-differential phi EndFraction plus StartFraction 1 Over r EndFraction left-parenthesis 2 sigma Subscript r r Baseline minus sigma Subscript theta theta Baseline minus sigma Subscript phi phi Baseline plus sigma Subscript r theta Baseline c o t theta right-parenthesis equals 0 comma(2.130)

      StartFraction partial-differential sigma Subscript r theta Baseline Over partial-differential r EndFraction zero width space zero width space plus StartFraction 1 Over r EndFraction StartFraction partial-differential sigma Subscript theta theta Baseline Over partial-differential theta EndFraction plus StartFraction 1 Over r s i n theta EndFraction StartFraction partial-differential sigma Subscript theta phi Baseline Over partial-differential phi EndFraction plus StartFraction 1 Over r EndFraction left-bracket 3 sigma Subscript r theta Baseline plus left-parenthesis sigma Subscript theta theta Baseline minus sigma Subscript phi phi Baseline right-parenthesis c o t theta right-bracket equals 0 comma(2.131)

      StartFraction partial-differential sigma Subscript r phi Baseline Over partial-differential r EndFraction zero width space zero width space plus StartFraction 1 Over r EndFraction StartFraction partial-differential sigma Subscript theta phi Baseline Over partial-differential theta EndFraction plus StartFraction 1 Over r s i n theta EndFraction StartFraction partial-differential sigma Subscript phi phi Baseline Over partial-differential phi EndFraction plus StartFraction 1 Over r EndFraction left-parenthesis 3 sigma Subscript r phi Baseline plus 2 sigma Subscript theta phi Baseline c o t theta right-parenthesis equals 0 comma(2.132)

      where the stress tensor is symmetric such that

      sigma Subscript r 
						<noindex><p style= Скачать книгу