Properties for Design of Composite Structures. Neil McCartney

Чтение книги онлайн.

Читать онлайн книгу Properties for Design of Composite Structures - Neil McCartney страница 25

Properties for Design of Composite Structures - Neil McCartney

Скачать книгу

sigma Subscript theta r Baseline comma sigma Subscript r phi Baseline equals sigma Subscript phi r Baseline comma sigma Subscript theta phi Baseline equals sigma Subscript phi theta Baseline period"/>(2.133)

      2.13 Strain–Displacement Relations

      For the special case when the strain tensor εij is uniform, and on using (2.107), the displacement fields

      StartLayout 1st Row u 1 left-parenthesis x right-parenthesis equals epsilon 11 x 1 plus epsilon 12 x 2 plus epsilon 13 x 3 comma 2nd Row u 2 left-parenthesis x right-parenthesis equals epsilon 12 x 1 plus epsilon 22 x 2 plus epsilon 23 x 3 comma 3rd Row u 3 left-parenthesis x right-parenthesis equals epsilon 13 x 1 plus epsilon 23 x 2 plus zero width space epsilon 33 x 3 comma EndLayout(2.134)

      and

      both lead to the same strain field given by

      StartLayout 1st Row epsilon 11 left-parenthesis x right-parenthesis identical-to StartFraction partial-differential u 1 Over partial-differential x 1 EndFraction equals epsilon 11 comma zero width space zero width space zero width space zero width space epsilon 22 left-parenthesis x right-parenthesis identical-to StartFraction partial-differential u 2 Over partial-differential x 2 EndFraction equals epsilon 22 comma epsilon 33 left-parenthesis x right-parenthesis identical-to StartFraction partial-differential u 3 Over partial-differential x 3 EndFraction equals epsilon 33 comma 2nd Row epsilon 12 left-parenthesis x right-parenthesis identical-to one-half left-parenthesis StartFraction partial-differential u 1 Over partial-differential x 2 EndFraction plus StartFraction partial-differential u 2 Over partial-differential x 1 EndFraction right-parenthesis equals epsilon 12 comma epsilon 13 left-parenthesis x right-parenthesis identical-to one-half left-parenthesis StartFraction partial-differential u 1 Over partial-differential x 3 EndFraction plus StartFraction partial-differential u 3 Over partial-differential x 1 EndFraction right-parenthesis equals epsilon 13 comma 3rd Row epsilon 23 left-parenthesis x right-parenthesis identical-to one-half left-parenthesis StartFraction partial-differential u 2 Over partial-differential x 3 EndFraction plus StartFraction partial-differential u 3 Over partial-differential x 2 EndFraction right-parenthesis equals epsilon 23 period EndLayout(2.136)

      When using cylindrical polar coordinates (r,θ,z), the displacement components ur,uθ,uz are related to the Cartesian components u1,u2,u3 as follows

      StartLayout 1st Row u Subscript r Baseline equals u 1 cosine theta plus u 2 sine theta comma 2nd Row u Subscript theta Baseline equals u 2 cosine theta minus u 1 sine theta comma 3rd Row u Subscript z Baseline equals u 3 comma EndLayout(2.137)

      having inverse

      StartLayout 1st Row u 1 equals u Subscript r Baseline cosine theta minus u Subscript theta Baseline sine theta comma 2nd Row u 2 equals u Subscript theta Baseline cosine theta plus u Subscript r Baseline sine theta comma 3rd Row u 3 equals u Subscript z Baseline comma EndLayout(2.138)

      and the strain–displacement relations are given by

      StartLayout 1st Row epsilon Subscript r r Baseline equals StartFraction partial-differential u Subscript r Baseline Over partial-differential r EndFraction comma epsilon Subscript theta theta Baseline equals StartFraction 1 Over r EndFraction left-parenthesis u Subscript r Baseline plus StartFraction partial-differential u Subscript theta Baseline Over partial-differential theta EndFraction right-parenthesis comma epsilon Subscript z z Baseline equals StartFraction partial-differential u Subscript z Baseline Over partial-differential z EndFraction comma 2nd Row epsilon Subscript r theta Baseline equals one-half left-parenthesis StartFraction 1 Over r EndFraction StartFraction partial-differential u Subscript r Baseline Over partial-differential theta EndFraction plus StartFraction partial-differential u Subscript theta Baseline Over partial-differential r EndFraction minus StartFraction u Subscript theta Baseline Over r EndFraction right-parenthesis comma epsilon Subscript theta z Baseline equals one-half left-parenthesis StartFraction partial-differential u Subscript theta Baseline Over partial-differential z EndFraction plus StartFraction 1 Over r EndFraction StartFraction partial-differential u Subscript z Baseline Over partial-differential theta EndFraction right-parenthesis comma epsilon Subscript r z Baseline equals one-half left-parenthesis StartFraction partial-differential u Subscript r Baseline Over partial-differential z EndFraction plus StartFraction partial-differential u Subscript z Baseline Over partial-differential r EndFraction right-parenthesis period EndLayout(2.139)

      When using spherical polar coordinates (r,θ,ϕ), the displacement components ur,uθ,uϕ are related to the Cartesian components u1,u2,u3 as follows:

      StartLayout 1st Row u Subscript r Baseline equals sine theta cosine phi u 1 plus sine theta sine phi u 2 plus cosine theta u 3 comma 2nd Row u Subscript theta Baseline equals cosine theta cosine phi u 1 plus cosine theta sine phi u 2 minus sine theta u 3 comma 3rd Row u Subscript phi Baseline equals cosine phi u 2 minus sine phi u 1 comma EndLayout(2.140)

      having inverse

      StartLayout 1st Row u 1 equals sine theta cosine phi u Subscript r Baseline plus cosine theta cosine phi u Subscript theta Baseline minus zero width space zero width space sine phi u Subscript phi Baseline comma 2nd Row u 2 equals sine theta sine phi u Subscript r Baseline plus cosine theta sine phi u Subscript theta Baseline plus cosine phi u Subscript phi Baseline comma 3rd Row u 3 equals cosine theta u Subscript r Baseline minus sine theta u Subscript theta Baseline comma EndLayout(2.141)

      and the strain–displacement relations are given by