Занимательная экономика. Теория экономических механизмов от А до Я. Алексей Савватеев

Чтение книги онлайн.

Читать онлайн книгу Занимательная экономика. Теория экономических механизмов от А до Я - Алексей Савватеев страница 6

Занимательная экономика. Теория экономических механизмов от А до Я - Алексей Савватеев Звезда нонфикшн

Скачать книгу

все поступят именно так, трасса встанет и время передвижения составит долгие 10 + 3000 / 50 = 70 минут, а это значит, что любой здравомыслящий водитель быстро поймет, что можно сэкономить полчаса, если по старинке использовать объездную. Напротив, если по новой трассе будет ехать только 500 автомобилистов, они доберутся всего за 10 + 500/50 = 20 минут, и у отправившихся вкруговую возникнут стимулы вернуться.

      Экономисты чаще всего изучают равновесия – ситуации, в которых никто из участников процесса не хочет ничего менять. В данном случае это случится, если время передвижения по обоим путям будет одинаково, то есть будет выполнено условие 10 + N/50 = 40. Откуда находим, что по новой трассе поедет ровно половина водителей, а именно 1500 человек.

      Оценим произошедшее. Могла ли в определенных обстоятельствах новая трасса улучшить жизнь общества? Да, могла. Мы приводили конкретный пример, когда 500 автомобилистов добирались от A до B быстрее, чем прежде, всего за 20 минут, а остальные ехали в объезд, затрачивая по-прежнему 40. И это еще не максимальная экономия времени, которую могло достичь общество, ведущее себя кооперативно. Однако если каждый ищет собственную выгоду, никакого улучшения мы не наблюдаем, и время передвижения по-прежнему составляет 40 минут для всех.

      Рис. 1.2. Схема движения в парадоксе Найта-Даунса

      Поможет ли расширение трассы в два раза? Пусть теперь короткий путь от A к B занимает 10 + N / 100 минут (рис. 1.3). Как и раньше, в равновесии не должно быть выгодно менять одну дорогу на другую, то есть 10 + N / 100 = 40. Решив уравнение, получим, что N = 3000. Это означает, что теперь все водители предпочтут ехать по новой трассе, но время движения по-прежнему составит неизменные 40 минут.

      1.2.2. Парадокс Даунса-Томсона

      Предыдущий параграф доказал нам, что строительство новых дорог или расширение старых может никак не повлиять на время передвижения по городу, который погряз в пробках. Еще удивительнее, что иногда может происходить ухудшение. И наша сегодняшняя история, известная под названием парадокса Даунса-Томсона, как раз на эту тему.

      Рис. 1.3. Обновленная схема движения в парадоксе Найта-Даунса

      Вернемся к примеру с многополосной объездной дорогой, по которой от пункта A к пункту B можно добраться за 40 минут, и короткой, но узкой трассой, время передвижения по которой зависит от интенсивности движения и составляет (10 + N / 50) минут. Пусть теперь между этими пунктами дополнительно запустили метро, которое ходит тем чаще, чем больше будет пассажиров, и позволяет добраться от A до B в среднем за (40 – M / 150) минут. Здесь M – число пассажиров. Схема представлена на рис. 1.4.

      Заметим, что если все жители в час пик предпочтут пользоваться метро, то есть M = 3000, то ходящие часто поезда позволят добираться в среднем за 40 – 3000 / 150 = 20 минут, что вдвое быстрее, чем было в предыдущем примере без метро. С другой стороны, если все (ну или почти

Скачать книгу