Возможны ли измерения в теории относительности? Конечно, нет!. Анатолий Николаевич Овчинников
Чтение книги онлайн.
Читать онлайн книгу Возможны ли измерения в теории относительности? Конечно, нет! - Анатолий Николаевич Овчинников страница
Поскольку начинать разговор мне придется с измерений в геометрии и математике, то я должен предупредить вас, что в этой работе речь идет о классической геометрии и математике. Геометрия здесь – евклидова. Математика – традиционная. В ней используются знаки и операции: больше, меньше, равно, плюс, минус, умножить, поделить, и. д. Таким образом, это – не теория множеств и не топология, где таких знаков нет.
Поясню также, почему приходится начинать с измерений в геометрии. Дело в том, что в современной физике геометрия, математика, и собственно физика, настолько взаимосвязаны, что вопрос о том, какая из них главнее при изучении законов природы становится чисто риторическим. А вот вопрос о том, с чего общего начинаются все эти три науки, действительно весьма важен. И с чего же одного общего они начинаются? Они начинаются с двух экспериментальных фактов: 1-й – построения геометра; 2-й – измерения геометра.
Замечания об обозначениях. Книга предназначена и для электронного и для бумажного варианта. Самые важные места я буду выделять курсивом. Далее, простейшие формулы я буду печатать в строку, используя для этого подходящие символы. Например, запись a/b будет означать – a деленное на b. Чтобы избежать печати верхних и нижних индексов, я буду широко использовать скобки, так запись t(3) будет означать – время, отсчитанное часами в точке номер 3. А запись СО(2) будет означать – система отсчета номер 2. Скорость точки всегда буду обозначать прописной (а не строчной) буквой V. Запись V(1) будет означать – скорость в точке пространства номер 1.
2. Понятие измерения
Мы настолько часто пользуемся словом «измерение», что от такого частого его употребления также часто забываем и о его настоящем понимании. И в результате этого понятие измерения превращается просто в слово – измерение. Поэтому мне придется сейчас вместе с вами кое- что вспомнить именно о понятии измерения.
Необходимость в понятии измерения появилась у геометров (разумеется, древних геометров). И эта необходимость появилась после того, как геометр сначала научился строить геометрические фигуры. Геометр первый сообразил, что измерить это значит узнать, во сколько (или на сколько) длина одного отрезка отличается от длины другого отрезка. Или во сколько (или на сколько) один угол отличается от другого угла. А для такого узнавания (то есть измерения) надо обязательно иметь возможность прикладывать один отрезок (эталонный и абсолютный) к другому отрезку, измеряемому. И обязательно иметь возможность прикладывать один угол (эталонный и абсолютный) к другому углу, измеряемому. А это в свою очередь означает, что при перемещении (движении), построенные уже эталонные фигуры, обязаны быть неизменными.
Сейчас я изложу, предположительно, как рассуждал бы древний геометр, когда пришел к выводу, что абсолютные (эталонные) отрезки обязательно необходимо иметь, раз мы заговорили об измерении. Пусть имеются два равных отрезка (отрезок – 1 равен отрезку – 2). Но вот в результате каких-то обстоятельств затем оказалось, что отрезок – 1 стал короче отрезка -2. Как узнать, что произошло с ними на самом деле? Здесь имеются пять вариантов развития событий.
1-й вариант. 1-й отрезок стал короче; 2-й отрезок не изменился.
2-й вариант. 1-й отрезок не изменился; 2-й отрезок стал длиннее.
3-й вариант. 1-й отрезок стал короче; 2-й отрезок стал длиннее.
4-й вариант. Оба отрезка укоротились, но 1-й отрезок укоротился больше, чем 2-й
5-й вариант. Оба отрезка стали длиннее, но 2-й отрезок удлинился больше, чем 1-й.
Нет никакой возможности узнать, что произошло с отрезками на самом деле. Это можно узнать, если только заранее… «Что если только заранее…»? Если только заранее у нас имеется аксиома: «Обязательно существует отрезок, длина которого не меняется ни при каких обстоятельствах. Этот отрезок абсолютен, и он может быть принят