Все науки. №3, 2023. Международный научный журнал. Ибратжон Хатамович Алиев

Чтение книги онлайн.

Читать онлайн книгу Все науки. №3, 2023. Международный научный журнал - Ибратжон Хатамович Алиев страница 7

Все науки. №3, 2023. Международный научный журнал - Ибратжон Хатамович Алиев

Скачать книгу

или ОДУ, включающие функции с одними переменными, чаще всего в лице времени и уравнения в частных производных с несколькими переменными. Если же уравнения в частных производных описывают более сложные характеристики, например изменение температуры в различных точках пространства, то обыкновенные дифференциальные уравнения описывают более статичные характеристики, изменяющиеся во времени.

      В качестве не плохого примера можно рассмотреть процесс падения некоего объекта. Как известно, гравитационное ускорение равняется 9,81 м/с2, откуда получается, что если проанализировать положение тела в каждую секунду и перевести это состояние в векторы, то они будут накапливать дополнительную нисходящую 9,81 м/с2 ускорения каждую секунду. Это и даёт пример простейшего дифференциального уравнения, решением коего будет функция y (t), производная которой даёт вертикальную составляющую, а скорость даёт вертикальную составляющую ускорения (1).

      Это уравнение можно решить, выделив (2) для скорости и (3) для пути.

      Интересен ещё тот момент, когда можно описывать движение небесных объектов в этом масштабе благодаря силе гравитации. Итак, даны два тела притяжение коего направлены в сторону друг друга с силой обратно пропорциональной квадрату расстояния между ними (4).

      Известно, что производная координаты – скорость, производная скорости – ускорение и нужно получить функцию для движения, но по уравнению (4), известно только уравнение для ускорения (5).

      Здесь может быть странным, что производная равняется этой же функции, но это обычное явление, когда производная первого или высших порядков определяется значениями самих же себя. Но на практике, более часто приходиться работать с дифференциальными уравнениями второго порядка, как это можно увидеть и в предыдущих примерах.

      Однако, существуют и дифференциальные уравнения с третьими (6) или четвёртыми (7) производными или более высокими (8) производными, что считаются дифференциальными уравнениями высшего порядка.

      В некоем роде, получается, что нужно найти бесконечно много чисел, по одному на каждый момент времени, но в целом это и совпадает с описанием функции. И чаще всего, даже если во многих случаях можно применить классическое описание, то в большей мере использование технологии обычных математических преобразований уже не отвечают требованиям. Тому доказательством может случить обычное описание характеристики математического маятника.

      Рассматривая реальный и идеализированный случай, можно отметить, что идеализация работает лишь на малых углах отклонения маятника, но когда же угол становиться достаточно большим, например равен полуокружности, то график описания его колебаний в целом перестают быть похожими на графики синуса или косинуса. Причиной тому является необходимость

Скачать книгу