Как машины думают? Математические основы машинного обучения. Артем Демиденко

Чтение книги онлайн.

Читать онлайн книгу Как машины думают? Математические основы машинного обучения - Артем Демиденко страница 3

Жанр:
Серия:
Издательство:
Как машины думают? Математические основы машинного обучения - Артем Демиденко

Скачать книгу

в более высоких измерениях (например, когда мы работаем с большими наборами данных) – вектор может иметь десятки, сотни или тысячи компонент.

      Матрицы

      Матрица – это таблица чисел, состоящая из строк и столбцов. Она может использоваться для описания множества векторов одновременно или для представления преобразований данных. Матрицы играют ключевую роль в вычислениях, потому что с их помощью можно эффективно описывать и решать сложные системы линейных уравнений.

      Матрицы могут выполнять разные функции. Например, они могут кодировать изображения, где каждая строка и столбец матрицы представляет пиксель и его цветовое значение. В машинном обучении матрицы также используются для представления данных: например, каждый ряд в матрице может описывать отдельный объект данных, а каждый столбец – его характеристику.

      Матрицы можно умножать на векторы или друг на друга, что позволяет создавать сложные преобразования данных. Например, в обучении нейронных сетей матрицы весов помогают преобразовывать входные данные и принимать решения на основе этих данных.

      Линейные преобразования

      Линейные преобразования – это математические операции, которые изменяют векторы или матрицы, сохраняя при этом линейную структуру данных. Линейное преобразование может быть описано как умножение вектора на матрицу. Это важно в машинном обучении, потому что многие алгоритмы основаны на линейных преобразованиях данных для выявления закономерностей и прогнозирования.

      Например, в нейронных сетях каждое преобразование между слоями сети можно рассматривать как линейное преобразование. Входные данные преобразуются матрицей весов, и результат этого преобразования проходит через нелинейные функции для принятия решений.

      Линейные преобразования позволяют эффективно изменять данные, обнаруживать ключевые признаки в них и адаптировать модели машинного обучения к различным задачам.

      Примеры использования в машинном обучении: нейронные сети, метод главных компонент

      Теперь, когда мы познакомились с основными понятиями линейной алгебры, давайте рассмотрим, как они используются в практических приложениях машинного обучения.

      Нейронные сети

      Нейронные сети – это один из основных инструментов машинного обучения. Они имитируют работу человеческого мозга, обрабатывая данные через множество слоев "нейронов". Каждый нейрон получает на вход информацию, преобразует ее с помощью линейных преобразований и передает результат на следующий уровень.

      Основная идея нейронных сетей заключается в том, что данные, представленные векторами, проходят через сеть, где на каждом этапе применяются матричные операции. Эти операции позволяют выявлять важные признаки данных, такие как черты изображения или ключевые слова в тексте.

      Процесс обучения нейронной сети заключается в нахождении таких

Скачать книгу