Онтогенез. От клетки до человека. Джейми Дейвис

Чтение книги онлайн.

Читать онлайн книгу Онтогенез. От клетки до человека - Джейми Дейвис страница 8

Онтогенез. От клетки до человека - Джейми Дейвис New Science

Скачать книгу

скорее всего, давно испортились, и «свежего» тубулина, способного предотвратить разрушение микротрубочки, не осталось. В таком случае микротрубочка распадется. Единственный способ избежать распада, не прибегая к помощи других молекул, – это быстрый рост, при котором «свежий» тубулин присоединяется к концу микротрубочки быстрее, чем разрушается «несвежий». Таким образом, микротрубочки либо быстро растут, либо катастрофически быстро распадаются. Существует постоянная вероятность разрушения, а это означает, что длинных трубочек всегда меньше, чем коротких. Эта особенность имеет непосредственное отношение к механизму нахождения клеточных центров.

      Молекулы тубулина редко самопроизвольно объединяются в новые микротрубочки, и поэтому в клетке есть особые комплексы белков, которые могут катализировать этот процесс. Эти комплексы располагаются в ключевом месте клетки, а именно в центросоме, от которой микротрубочки расходятся радиально, как спицы от ступицы колеса.[7] Пока они растут достаточно быстро для того, чтобы тубулин на их концах оставался свежим, микротрубочки будут удлиняться по направлению к периферии клетки. Существует две теории о том, как они помогают центросоме попасть в центр клетки. Они основаны на экспериментальных данных, полученных при исследовании различных организмов. Еще не ясно, какая из них справедлива для эмбрионов человека; не исключено, что обе. Одна из теорий связана с отталкиванием, а другая – с подтягиванием.

      Механизм отталкивания[8] основан на способности растущих микротрубочек отталкиваться от внутренней поверхности клеточной мембраны. Если центросома располагается близко к одной из сторон клетки, даже короткие микротрубочки смогут достичь поверхности мембраны и оттолкнуться от нее. В результате центросома отдаляется от этой стороны. Противоположной стороны клетки достигают только очень длинные микротрубочки, но они по упомянутым выше причинам встречаются редко. А поскольку таких микротрубочек меньше, они будут слабее отталкивать центросому от этой стороны клетки. Такое неравномерное распределение сил оттолкнет центросому от ближайшей мембраны, и она займет стабильное положение только тогда, когда силы отталкивания придут в равновесие. Равновесие же наступает тогда, когда центросома находится на одинаковом расстоянии от всех сторон: другими словами, в центре клетки (рис. 4, а). Ученые поместили центросомы в искусственно изготовленную «ячейку» и доказали, что им удалось найти центр «ячейки» с помощью механизма отталкивания.[9]

      Механизм подтягивания[10],[11],[12] основан на действии небольших моторных белков, распределенных по всей клетке. Они могут связываться с микротрубочками и перемещаться по ним в сторону центросомы. Продвигаясь к центросоме, каждый из этих белков генерирует силу, которая слегка тянет микротрубочку в противоположном направлении, смещая ее в сторону клеточной

Скачать книгу


<p>7</p>

Schaten H. The mammalian centrosome and its functional significance. Histochem Cell Biol. 2008; 192:667–86.

<p>8</p>

Reinsch S, Gönczy P. Mechanisms of nuclear positioning. J Cell Sci. 1998; 111:2283–95.

<p>9</p>

Holy TE, Dogterom M, Yurke B, Leibler S. Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Natl. Acad. Sci. USA 1997; 94:6228–31.

<p>10</p>

Grill SW, Hyman AA. Spindle positioning by cortical pulling forces. Dev Cell. 2005; 8:461–5.

<p>11</p>

Kimura A, Onami S. Local cortical pulling-force repression switches centrosomal centration and posterior displacement in C. elegans. J Cell Biol. 2007; 178:1347–54.

<p>12</p>

Kimura A, Onami S. Computer simulations and image processing reveal length-dependent pulling force as the primary mechanism for C. elegans pronuclear migration. Dev Cell. 2005; 8:765–75.