Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II. А. А. Астахов
Чтение книги онлайн.
Читать онлайн книгу Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II - А. А. Астахов страница 26
4.3. ВТОРОЙ ВАРИАНТ ПРОЯВЛЕНИЯ УСКОРЕНИЯ КОРИОЛИСА. ОТНОСИТЕЛЬНАЯ СКОРОСТЬ НАПРАВЛЕНА ВДОЛЬ ОКРУЖНОСТИ, ПЕРПЕНДИКУЛЯРНО РАДИУСУ ВРАЩАЮЩЕЙСЯ СИСТЕМЫ
Второй вариант классического ускорения Кориолиса, которое якобы проявляется при перпендикулярном радиусу поворотном движении, описан, например, в упомянутой выше работе Матвеева А. Н. «Механика и теория относительности» 3-е издание, Москва, «ОНИКС 21 век», «Мир и образование», 2003г. (см. фотокопию в главе 4.1). На странице (404) Матвеев пишет:
«В случае движения точки перпендикулярно радиусу, т.е. по окружности, относительная скорость (vотн.= ωотн. * r), а угловая скорость вращения точки в неподвижной системе координат (ω + ωотн.), где ω— угловая скорость вращающейся системы координат. Для абсолютного ускорения получаем следующее выражение:
аабс. = (ω + ωотн.) 2 * r = ω 2 r + ωотн. 2 * r +2 * ω * ωотн. * r (66.6)»
Далее в работе Матвеева утверждается, что первый член выражения (66.6) – (ω2 * r) определяет непосредственно переносное ускорение, второй член (ωотн.2 * r) определяет относительное ускорение, а третий член (2 * ω * ωотн. * r) выражения (66.6) с классической точки зрения и представляет собой ускорение Кориолиса.
Надо полагать, что в общем случае переносное и относительное движения, как при радиальном, так и при перпендикулярном радиусу относительном движении могут быть как равномерными, так и переменными. В последнем случае задача определения силы и ускорения Кориолиса значительно усложняется, т.к. появляется необходимость учитывать мгновенные значения радиуса и угловой скорости. Поэтому классическая физика рассматривает частный случай поворотного движения, в котором для упрощения вывода формулы силы и ускорения Кориолиса переносное и относительное движения считаются постоянными. Далее, якобы переходя к мгновенным, а по сути, к средним значениям параметров переносного и относительного движения, классическая физика напрямую, безо всяких оговорок распространяет полученные теоретические зависимости на общий случай проявления ускорения Кориолиса.
И это не наши фантазии:
Поясняя переносное ускорение при выводе ускорения Кориолиса «простым вычислением», (см. фотокопию выше, стр. 405, ф. 66.14) Матвеев подчёркивает, что речь в его выводе идет только о равномерном вращении: «Таким образом, переносное ускорение является центростремительным (напомним, что угловая скорость вращения считается постоянной)». Но если угловая скорость абсолютного вращения с постоянным радиусом так же постоянная, то все составные вращения, которые появляются в формуле разложения центростремительного ускорения по формуле квадрата суммы двух чисел, это так же есть равномерные вращательные движения. Ранее в отношении формулы (66.6) на странице (404) Матвеев так же утверждает: «Все ускорения в (66.6) направлены