Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II. А. А. Астахов

Чтение книги онлайн.

Читать онлайн книгу Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II - А. А. Астахов страница 33

Физика движения. Альтернативная теоретическая механика, или Осознание знания. Книга в двух томах. Том II - А. А. Астахов

Скачать книгу

сдвиг фаз).

      Таким образом, при произвольном направлении относительного движения в формуле (4.4.1) необходимо учитывать абсолютную угловую скорость (Ωn) равную сумме текущих угловых скоростей переносного и относительного движений:

      Ωn = ωет + ωотн. т,

      Где:

      ωет = (Ω (n-1)) – переносная угловая скорость текущая равная абсолютной угловой скорости на (n-1) шаге дифференцирования;

      ωотн. т – относительная угловая скорость в текущем интервале времени дифференцирования (n).

      В свою очередь в выражении (2 * ω * ωотн.┴ * r) для дополнительного ускорения, обусловленного перпендикулярной к радиусу составляющей относительного движения необходимо учитывать не абсолютную угловую скорость, а переносную угловую скорость, т.к. в выражении для относительной линейной скорости (ωотн.┴ * r = Vотн.┴) уже учтена относительная угловая скорость (ωотн.┴), дополняющая переносную угловую скорость до абсолютной угловой скорости.

      Собственно это очевидно и из самого выражения для дополнительного ускорения (2 * ω * ωотн.┴ * r), в котором присутствуют обе угловые скорости (абсолютная ω и относительная (ωотн.┴).

      Таким образом, в слагаемые выражения (4.4.1), представляющие собой составляющие классического ускорения Кориолиса при произвольном направлении относительного движения должны подставляться разные угловые скорости (Ωn) и (ωет).

      При этом выражение для ускорения Кориолиса при произвольном направлении относительного движения (4.26) с учетом классического поворотного ускорения при радиальном и при перпендикулярном к радиусу относительном движении будет иметь вид, несколько отличающийся от классической формулы вида (66.7):

      ак = 2 * Ωn * Vотн.═ +2 * ωет * Vотн.┴ (4.4.2)

      В выражении (4.4.2), математические преобразования по приведению этого выражения к выражению вида (66.7) невозможны, т.к. угловые скорости в каждом слагаемом формулы (4.4.2) разные.

      Следовательно, физический смысл классического ускорения Кориолиса по первому варианту не соответствует его же физическому смыслу во втором варианте.

      Это еще раз подтверждает, что как минимум один из этих вариантов не связан с явлением Кориолиса.

      Причем поскольку во втором варианте классическая физика пытается увязать ускорение Кориолиса с центробежной силой равномерного вращательного движения, то, скорее всего именно этот вариант не относится к явлению Кориолиса

      С учетом реальной текущей угловой скорости при произвольном направлении относительного движения в формуле (4.4.2) вынести за скобки чисто математически можно только множитель «2», что с нашей точки зрения также не бесспорно, т.к. в нашей версии ускорения Кориолиса множитель «2» отсутствует.

      Множитель «2» при радиальном относительном движении скорее противоречит физической сущности поворотного движения, чем соответствует ей. По крайней мере, все существующие классические объяснения

Скачать книгу