О принципе противоречия у Аристотеля. Критическое исследование. Ян Лукасевич

Чтение книги онлайн.

Читать онлайн книгу О принципе противоречия у Аристотеля. Критическое исследование - Ян Лукасевич страница 7

О принципе противоречия у Аристотеля. Критическое исследование - Ян Лукасевич

Скачать книгу

будет добавить, что именно неевклидова геометрия и послужила нам образцом для построения неаристотелевой логики» [Васильев 1912/1989: 54][34]. Одновременно с Лукасевичем и Васильевым построением новой логики под воздействием открытия новой геометрии вдохновился еще один ученый – американский философ, логик, математик, основоположник прагматизма и семиотики Ч. С. Пирс. В журнале “The Monist” опубликованы отрывки из писем Пирса о занятиях неаристотелевой логикой. В его письме есть такие слова: «… я осмысливал ситуацию, когда допускается, что законы логики отличны от тех, которые мы знаем. Это была своего рода неаристотелева логика в том же смысле, в каком мы говорим о неевклидовой геометрии» (см. [Carus 1910a: 45])[35].

      Так революция в геометрии произвела революцию в логическом мышлении.

      7. Вторым событием, поразившим современников, был кризис в основаниях математики, продолжающийся до сих пор и наиболее ярко выразившийся в парадоксе Рассела (1902 год). Лукасевич подробно рассматривает его в XVIII главе под названием «Принцип противоречия и конструкции разума». Стандартная формулировка этого парадокса выглядит так. Пусть K – множество всех множеств, которые не содержат себя в качестве своего элемента. Содержит ли K само себя в качестве элемента? Если да, то по определению K оно не должно быть элементом K – противоречие. Если нет – то по определению K оно должно быть элементом K – вновь противоречие. Таким образом, в этой конструкции разума мы получаем, что доказуемы оба высказывания (KK) и – (KK), а следовательно, и их конъюнкция. Тогда доказуема произвольная формула B (см. выше). Хотя Лукасевич и говорит здесь, что он не будет пытаться решить эту проблему, но, тем не менее, отмечает, что «у нас есть выбор: либо не использовать принцип противоречия, либо отбросить принцип исключенного третьего[36]». Что касается принципа исключенного третьего, то при формулировке парадокса Рассела без него можно обойтись (см. примечание 2 к гл. XVIII), а вот не применение или ограничение принципа противоречия в самой теории множеств выливается в построение паранепротиворечивой теории множеств (см. [Brady 1989]).

      Спустя более полувека после публикации этого парадокса в книге [Френкель и Бар-Хиллел 1966: 18], ставшей классикой, подчеркивается: «С самого начала следует уяснить, что в традиционной трактовке логики и математики не было решительно ничего, что могло бы служить в качестве основы для устранения антиномии Рассела. ‹…› Некоторый отход от привычных способов мышления явно необходим, хотя место этого отхода заранее не ясно». Можно только догадываться, что испытывал Лукасевич, поглощенный мыслью о построении новой логики, когда столкнулся с очень простой, но явно противоречивой конструкцией разума в виде парадокса Рассела.

      Обнаружение противоречий в «области априорных конструкций сознания», а также идея Мейнонга[37] о противоречивых, т. е. невозможных объектах типа «круглый квадрат», для

Скачать книгу


<p>34</p>

Как следует из [Raspa 1999, примечание 88], первым, кто на Западе обратил внимание на эти работы, был ученик Лукасевича Антоний Корчик [Korcik 1955]. Однако известность идеям Васильева на Западе принесла статья В.А. Смирнова [Смирнов 1962], которая была прореферирована Д. Коми [Comey 1965].

<p>35</p>

См. также [Carus 1910b]. На это обратил внимание В.А. Бажанов в [Bazhanov 1992], где он пишет о влиянии Пирса на логические работы Васильева. Интересно, что в [Бажанов 2009] об этом не сказано ни слова. Данная тематика со ссылкой на [Bazhanov 1992] обсуждается также в [Raspa 1999].

<p>36</p>

Принцип исключенного третьего (лат. tertium non datur) Лукасевич формулирует так: два противоречащих высказывания не являются одновременно ложными, а следовательно, одно из них должно быть истинным.

<p>37</p>

В книге имеется ряд ссылок на А. Мейнонга; в данном случае см. гл. XVII. Интересно, что Мейнонг во втором издании своей известной работы «Uber Annahmen» (Leipzig, 1910: 228) цитирует абстракт [Łukasiewicz 1910b] данной книги Лукасевича.