Теоретическая механика. Часть 4. Динамика системы материальных точек и твердого тела с решениями задач. Михаил Иванович Бармин

Чтение книги онлайн.

Читать онлайн книгу Теоретическая механика. Часть 4. Динамика системы материальных точек и твердого тела с решениями задач - Михаил Иванович Бармин страница

Теоретическая механика. Часть 4. Динамика системы материальных точек и твердого тела с решениями задач - Михаил Иванович Бармин

Скачать книгу

для освоения студентами инженерных дисциплин, таких как “Сопротивление материалов”, “Теория механизмов и машин”, “Детали машин”, “Подъемно – транспортные устройства и др. ”

      Михаил Иванович Бармин родился в городе Ленинграде 15 января 1948 года. Окончил Ленинградский технологический институт (Технический университет) в 1973 году. Инженер химик-технолог (химия и технология высокомолекулярных соединений). Более 8 лет производственного опыта (органический синтез на полупромышленных установках по синтезу новых органических соединений). Закончил аспирантуру в срок в 1985 году. Кандидат химических наук (химия и технология гетероциклических соединений).Удостоин звания доцента в 1985 году.

      Действительный член Нью-Йоркской академии наук (1995-1998 гг.), Соросовский доцент (2001, 2002), лауреат премии «Грант Санкт-Петербурга» (2002). С 1972 года занимается научной деятельностью. Автор более 180 научных и методических трудов (в том числе 3 монографий, 2 обзора , 22 изобретения), автор и соавтор 5-и технологий.

      Автор сайта http://www.teachmi.ru/ – обучение химии на всем протяжении этого процесса от школы до аспирантуры. На сайте будут предложены авторские лекции и книги по химии, впоследствии по всем предметам 1,2 курса университета. Можно приобрести некоторые реактивы, купить лицензии на новые технологии в области химии. В настоящее время работает на кафедре теоретической и прикладной химии Санкт-Петербургского государственного университета технологии и дизайна в должности доцента.

      Динамика системы материальных точек и твердого тела

      ЛЕКЦИЯ 1

      Понятие системы материальных точек; связи, налагаемые на систему (внешние и внутренние); степени свободы “S” различных механических систем.

      Система материальных точек – это совокупность любого их числа (i=1:n, причем n), рассматриваемая в совместном движении.

      Примером может служить любая звездная система, например, солнечная. Материальные точки (М.Т.) , т. е. точки, масса “m” которых известна, включаемые в механическую систему (М.С.) могут быть связаны между собою различными связями внутри М.С. Такие связи называют внутренними связями.

      В случае, когда М.С. имеет только внутренние связи, ее движение в пространстве ничем не ограничено и такая система называется свободной. В части II – кинематике рассматривается вопрос о числе степеней свободы свободной неизменяемой системы с (“i =1-n”) неограниченным числом “n” материальных точек. Там, базируясь на выражении S=3n-K, где “К” – число внутренних связей, мы приходили к выводу, что свободное абсолютно твердое тело (Т.Т.) имеет S = 6 степеней свободы и для описания его механического перемещения в пространстве нужно соответственно б кинематических уравнений движения. Задачей динамики твердого тела будет вывести эти уравнения, базируясь на дифференциальных уравнениях движения и интегрируя их. Связи, налагаемые на М.С. могут быть как стационарными (неизменяемыми), так и односторонними. Например (Рис. 1.1.) в случае “А” точки системы связаны жестким невесомым стержнем постоянной длины “I”= const. В случае “В” они вязаны пружиной, которая может менять свою длину “I” под действием внешних сил “Fe”, действующих на систему, и эта система геометрически изменяемая, а связь неудерживающая.

      Односторонние связи (нить, например) препятствуют движению М.Т. в одном каком—то направлении (Рис. 1.1, В)

      Различают связи геометрические (голономные), которые ограничивают движение М.Т. системы в пространстве, не влияя на их скорость “

      V

      i” и

      дифференциальны

      е(неголономные), которые, помимо ограничений в перемещении точек М.С., влияют еще и на их скорость.

      Так, например, гладкая поверхность (без трения) является для тела геометрической связью, а шероховатая (с трением) – дифференциальной (Р.

      S

      . – в ч.

      I

      , статике, эти связи назывались соответственно идеальными и связями с трением).

      Связи, наложенные на М.С. могут быть внешними, действующими извне на М.С. и внутренними, связывающими М.Т. внутри системы (Рис. 1.2.А)

      Если на систему наложены внешние связи, то она считается несвободной и число ее степеней свободы S<6.

      Силы, действующие на М.С. могут быть как внешними () так и – внутренними силами взаимодействия между точками внутри системы () (Рис. 1.2.),

      По аксиоме динамики, изложенной в ч. III конспекта, всякому действию соответствует равное и противоположно направленное противодействие.Согласно этой аксиоме(Рис.1.2,в)

Скачать книгу