Теоретическая механика. Часть 4. Динамика системы материальных точек и твердого тела с решениями задач. Михаил Иванович Бармин
Чтение книги онлайн.
Читать онлайн книгу Теоретическая механика. Часть 4. Динамика системы материальных точек и твердого тела с решениями задач - Михаил Иванович Бармин страница 3
Если для вех точек “” системы ускорение свободного падения 9,81 м/, то умножая и деля на g выражения 1.7 получим координаты центра тяжести твердого тела весом Р=Mg, т.е.
; ; . (1.8)
Эти формулы выводились в ч. 1 – статике. В целом понятие центра масс более широкое, чем частное понятие центра тяжести. В ряде случаев координаты центра масс и центра тяжести не совпадают по положению.
В процессе движения М.С. меняются координаты () С. Установим закон их изменения с помощью теоремы о движении центра масс. Формулировка. Центр масс механической системы (и твердого тела) движется так, как двигалась бы материальная точка, в которой сосредоточена масса всей системы (М=) и к которой приложены все – внешние силы, действующие на все точки системы. Внутренние силы () не влияют на движение центра масс.
Доказательство. Берем за базу 2—закон Ньютона применяем его ко всем i=1/n точкам системы (). Учтем при этом, что ,
т.к. это свойство главного вектора внутренних сил. Имеем:
. Выясним, чему равна , учтя, что и по рис.1.6.
Имеем: , т.е. Тогда 1.9
Это и есть закон движения центра масс механической системы и Твердого тела. Видно, что только внешние силы влияют на его движение.
Часто М.С. получает движение как раз из—за наличия в ней внутренних сил , но эти внутренние силы вызывают внешние реактивные силы которые и влияют на движение центра масс “С”.
Это легко понять, анализируя процесс выстрела снарядом из ствола орудия. Система ствол—снаряд за счет внутренних сил давления пороховых газов получает движение вида: снаряд—направо, орудийный ствол– налево. Так возникает “отдача” при выстреле. Орудие контактирует с внешней средой и при откате его возникает реакция внешней связи которая входит в группу всех внешних сил, так что выражение 1.9. Можно
расширенно записать так:
1.10
В выражениях 1.10 имеем дифференциальные уравнения движения () С, интегрируя которые можно получить кинематические уравнения движения () С, т.е. x=x(t), y=y(t) и z=z(t).
1.5. Понятие о моментах инерции”I” механической системы и твердого тела. Более объемной характеристикой распределения масс “m” внутри механической системы и твердого тела любой формы является понятие о
моментах инерции”I”.
Если условие существования центра масс ( ) не всегда отражает истинное положение точек “mi” системы (Рис. 1.7), то для “I” имеем: Здесь поэтому и чем больше ,тем больше I.
Различают плоскостные, осевые и полярные моменты инерции. Определим их для твердого тела в системе декартовых осей (рис.1.8).
Плоскостные J: ;
;
Осевые J определим исходя из того, что кратчайшее расстояние от точки “m” до оси “oy” (рис.1.8) определится по теореме Пифагора как “”
Тогда осевые J: ;
;
.
Учтя, что расстояние от М до полюса “O” есть большая диагональ параллелепипеда, т.е. , имеем Полярный