Путеводитель для влюбленных в математику. Эдвард Шейнерман

Чтение книги онлайн.

Читать онлайн книгу Путеводитель для влюбленных в математику - Эдвард Шейнерман страница 5

Путеводитель для влюбленных в математику - Эдвард Шейнерман

Скачать книгу

отметить, что простые числа в выражениях (A) и (B) одинаковые, различается лишь порядок, в котором они перемножаются. Это показано на рисунке.

      Любой способ представления числа 120 в качестве произведения простых чисел дает один и тот же результат.

      Эта единственность разложения на множители зафиксирована в следующей теореме[17].

      Теорема (основная теорема арифметики). Любое положительное целое (натуральное) число может быть разложено на простые множители единственным образом (если пренебречь порядком множителей)[18].

      (Здесь необходимо небольшое пояснение. В случае, скажем, числа 30 это утверждение достаточно ясно. Мы можем представить 30 как 2 × 3 × 5 или как 5 × 3 × 2 – разницы нет, отличается лишь порядок множителей. Простое число имеет всего один простой множитель – само себя. Например, множитель 13 – это 13. Но как быть с 1? Принято говорить, что пустое произведение[19] равно единичному элементу; таким образом, произведение отсутствующих элементов равно 1.)

      Сочетая простые числа, мы выстраиваем все положительные целые числа. Простые числа – это атомы умножения.

Насколько много?

      Вернемся к вопросу: сколько всего простых чисел существует? Ответ – на следующей строчке.

      Теорема. Простых чисел бесконечно много.

      Утверждение приписывают Евклиду[20]. Доказательство этой теоремы – математическая жемчужина. Мы не можем доказать ее методом перебора. Очевидно, что время от времени в числовом ряде попадаются простые числа. Вот несколько первых простых чисел:

      2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 и 67.

      Но чем дальше мы идем по последовательности простых чисел, тем обширнее становятся промежутки между ними. Если посмотреть на перечень выше, можно увидеть, что два числа отстоят друг от друга максимум на 6 единиц (например, 53 и 59). Но простые числа 89 и 97 отстоят друг от друга на 8 единиц, все целые числа между ними составные. Или вот другой пример: 139 и 149 – их отделяет 10 единиц. Чем дальше мы двигаемся, тем быстрее увеличиваются промежутки между соседними простыми числами. Можно предположить, что в конечном итоге простые числа должны совсем исчезнуть. На самом деле, хотя они и встречаются все реже, их список в числовом ряду не имеет конца. Впрочем, прежде чем говорить об этом уверенно, мы должны привести доказательство.

      Ключевая идея – задаться вопросом: а что, если?..

      А что, если количество простых чисел конечно? Если мы продемонстрируем, что предположение: «Количество простых чисел конечно» – приводит к абсурдному выводу, то будем считать его ложным[21]. Вслед за Шерлоком Холмсом мы найдем истину, отбросив невозможные варианты, и у нас получится, что простых чисел бесконечно много.

      Вот что нам надо будет сделать:

      1. Предположить, что количество простых чисел конечно;

      2. Показать, что это предположение ведет к невозможному выводу;

      3. Сделать умозаключение, что, раз предположение ведет к логическому противоречию, оно ложно;

      4. Вывести

Скачать книгу


<p>17</p>

Теорема – это математическое утверждение, которое может быть неопровержимо доказано. Теорема в корне отличается от научной теории, представляющей собой модель или объяснение, которое подтверждается экспериментами. Также теорема отличается от математической теории, представляющей собой совокупность определений и теорем по определенной проблематике.

<p>18</p>

Мы не даем доказательства основной теоремы арифметики. Его можно найти в большинстве книг по теории чисел – области математики, изучающей свойства чисел.

<p>19</p>

Возведение числа в нулевую степень – пример пустого произведения. По определению, 10 представляет собой результат умножения числа 10 на само себя n раз. В случае n = 0 значение выражения 100 равно 1: это результат перемножения при отсутствии элементов!

<p>20</p>

Евклид – автор геометрического трактата «Начала», вершины античной математики. Его научная деятельность протекала в Александрии на рубеже IV и III веков до н. э. – Прим. пер.

<p>21</p>

Подобным образом преступника ловят на лжи. «Вы утверждаете, что были дома в ту ночь, мистер Нулик?» – «Да». – «Чем вы занимались?» – «Телевизор смотрел». – «А вы в курсе, что в тот вечер отключали электричество?» – «Э…» Очевидно, что мистер Нулик в столь поздний час не смотрел телевизор!