Нейросетевая торговая система. Пошаговая разработка для платформы Meta Trader 4 в среде MATLAB. Сокращенное издание. Андрей Дибров
Чтение книги онлайн.
Читать онлайн книгу Нейросетевая торговая система. Пошаговая разработка для платформы Meta Trader 4 в среде MATLAB. Сокращенное издание - Андрей Дибров страница 2
Заполним эти столбцы Данными из столбца CloseD. Как Вы уже поняли, это данные дневных закрытий.
Далее мы сдвинем эти данные в наших столбцах последовательно на одну ячейку вверх.
Таким образом, мы получим в каждой строке вектор из дневных цен закрытия с глубиной в десять дней – это будут входы нейросети. А в столбце Out, который также сдвинут на один день вперед по отношению к In10, будут обучающие примеры закрытия дня для нейросети.
С помощью надстройки NeuroSolutions, выделив столбцы In1-In10, отформатируем их как входы.
А столбец Out как выход нейросети.
Аналогичным образом разобьем нашу матрицу построчно на обучающее множество.
И множество, которое мы будем использовать для анализа.
Теперь мы сформируем файлы для программы NeuroSolutions.
Откроем NeuroSolutions и нажмем кнопку NeuralBuilder.
Выберем модель нейросети Multilayer Perceptron.
Нажмем кнопку Browse…
И откроем файл с обучающими входами.
Далее откроем файл с обучающим выходом.
Определим 30% данных из тренировочного множества для перекрестной проверки в процессе обучения нейросети.
Жмем кнопку Next до тех пор, пока не сформируется нейросеть.
С помощью кнопки Start и запустим процесс обучения.
После завершения процесса обучения нажмем кнопку Testing.
В выпадающем списке выберем Production.
Выберем файл с данными для анализа.
Создадим текстовой файл Prod.
И экспортируем в него данные с результатами, полученными от нейросети.
Откроем файл Prod и скопируем из него отклики нейросети.
Вставим эти отклики рядом с реальными дневными закрытиями, которые мы хотели бы получить в результате работы нейросети.