Укрощение бесконечности. История математики от первых чисел до теории хаоса. Иэн Стюарт
Чтение книги онлайн.
Читать онлайн книгу Укрощение бесконечности. История математики от первых чисел до теории хаоса - Иэн Стюарт страница 6
Сегодня мы поступаем так же. Мы используем простейшие вычисления, незначительные даже для арифметики, для сотен мелких дел: добавления в нужной концентрации средства от паразитов в пруд с золотыми рыбками, покупки нужного числа рулонов новых обоев для спальни, составления маршрута таким образом, чтобы потратить меньше бензина и сэкономить. А наша культура использует высшую математику в науке, технологиях и всё больше в торговле. Изобретение цифр и арифметического счета наряду с обретением речи и письма занимает законное место среди достижений, которые отличают нас от обучаемых обезьян.
Глава 2. Логика формы
В математике существует два основных типа рассуждений: символьный и наглядный. Символьная выкладка ведет историю от числовой записи, и мы вкратце ознакомились с тем, как это привело к изобретению алгебры, где символы могут обозначать скорее обобщенные числа («неизвестные»), чем какие-то конкретные («7»). Начиная со Средних веков и до наших дней математика всё больше опирается на символы: если хотите убедиться, достаточно взглянуть на любой современный математический текст.
Начала геометрии
Наравне с символами математики используют схемы и диаграммы, открывающие неограниченные возможности для визуализации научных выкладок. Картинки менее формальны, чем символы, и чаще всего именно это ставит под вопрос целесообразность их использования. Широко распространено убеждение, будто картинка дает менее строгую и логичную выкладку, чем подсчеты с помощью символов. Это верно: изображение всегда оставляет больший простор для толкований. Более того, картинка может содержать скрытые намеки. Мы не можем изобразить некий «обобщенный» треугольник: любой треугольник будет иметь свою форму и размеры, которые порой не соответствуют случайно выбранной фигуре. Но поскольку визуальная интуиция остается очень мощной особенностью нашего мозга, наглядные образы играют важную роль в математике. Фактически они определяют вторую по важности идею предмета после чисел, т. е. его форму.
Табличка YBC 7289 с клинописными числами
Увлечение математиков