Поля и вихроны. Структуры мироздания Вселенной. Третье издание. Александр Александрович Шадрин
Чтение книги онлайн.
Читать онлайн книгу Поля и вихроны. Структуры мироздания Вселенной. Третье издание - Александр Александрович Шадрин страница 20
1.4. Гиперпространство Вселенной
Гиперструктура пространства Вселенной носит объемно-сетчатый и ячеистый характер. Бесконечно большой, но конечный и непрерывно расширяющийся «пузырь» нашей Вселенной, далеко неравномерно заселен звездами, галактиками, скоплениями и сверхскоплениями галактик в стенах в видимой ее части размером ~ 1028 см. Исследования вращений спиральных галактик, а также распределений скоростей галактик в скоплениях и сверхскоплениях показало, что большая часть полной массы Вселенной невидима и обнаруживается лишь по гравитационному воздействию на наблюдаемые видимые объекты. Поэтому основная часть гравитационного пространства (95,1%) является невидимой, и, следовательно, дополнительно не освещена потоками фотонов. И как в любом расширяющемся пространстве на первое место по его структуре встает вопрос о месторасположении центра такой сферы. Уже точно установлено Хаббловское расширение Вселенной со скоростью пропорциональной удалению разбегающихся Галактик от нас. Точное установление центра Вселенной, а также ее анализ и изучение ее структуры позволит дать ответ на вопрос о характере направления эволюции материи в пространстве – синтез или распад?
Если считать видимую часть Вселенной ближайшей к центру, то центральным ядром этого «пузыря» должна быть область, где полностью отсутствует тёмная активная материя и энергия или ЧСТ, а ее центр должен быть определен по полному отсутствию центральных гравитационных (звезд, Галактик) полей. Это могут быть россыпи газопылевых туманностей соизмеримых по пассивной массе большим звездным скоплениям. Области видимой части Вселенной, где преобладает структура в виде групп и скоплений галактик, образующих вытянутые «нити» (стены) – филаменты, создают связную трехмерную сетку гравитационных полей – из пузырей
57
В микромире такое движение реализуется при зарядке вторичного магнитного монополя в вихроне фотона, при движении магнитного монополя в микровихроне электрона и т. д.