Сопротивление материалов. Шпаргалка для студентов. Роман Сиренко

Чтение книги онлайн.

Читать онлайн книгу Сопротивление материалов. Шпаргалка для студентов - Роман Сиренко страница 5

Сопротивление материалов. Шпаргалка для студентов - Роман Сиренко

Скачать книгу

от изменения угла α между нормалью к площадке и направлением растягивающей силы.

      Из Рис. 3.2 имеем:

      σα = Sα·cosα = σ0 cos2α;

      τα=Sα · sinα = σ0 sinα · cosα = ½σ0 sin2α.

      Принимаем правило знаков: растягивающие напряжения σα, т. е. совпадающие с направлением внешней нормали, будем считать положительными; нормальные напряжения обратного направления – сжимающие – будем принимать со знаком минус. Касательное напряжение считается положительным, если оно дает момент по часовой стрелке относительно центра рассматриваемого сечения, отрицательным, если оно дает момент против часовой стрелки. Наличие этих двух видов напряжений соответствует наличию двух видов деформаций: продольной деформации и деформации сдвига. Для проверки прочности необходимо установить наибольшие значения σα и τα в зависимости от положения площадки mn. Из Рис. 3.2 понятно, что σα достигает своего наибольшего значения, когда cos2α будет равен единице и угол α = 0. Максимум τα получится при sin 2α = 1, т. е. при 2α = 90° и α = 45°. Величины этих наибольших напряжений будут равны:

      10. Понятие о главных напряжениях. Виды напряженного состояния материалов

      Чтобы рассчитать прочность бруса при деформациях, нужно определить его напряжение в поперечном сечении. Если деформация сложная, то говорят о необходимости установить напряженное состояние в точке. Чтобы найти напряжение в точке, через эту точку нужно провести сечение. Через точку можно провести бесконечное множество сечений, следовательно, и напряжений в точке бесконечно много. Совокупность всех этих напряжений называется напряженным состоянием в точке.

      Для нахождения напряженного состояния в точке тела возьмем элементарный параллелепипед с длинами сторон dx, dy, dz, при уменьшении этих длин сторон параллелепипед стягивается в точку. На грани этого параллелепипеда действуют напряжения, указанные на Рис. 4.1. (Имеется в виду, что указанные напряжения действуют на все грани). При поворотах параллелепипеда его напряжения изменяются, и можно подобрать такое положение, в котором все касательные напряжения будут равны нулю (Рис. 4.2). Площадки, на которых действуют только положительные напряжения, называют главными, соответственно, нормальные напряжения на этих площадках также называются главными и обозначают σ1, σ2, σ3. Наибольшее из напряжений обозначается σ1, наименьшее – σ3. Необходимо учитывать знаки: напряжения растяжений считаются положительными, напряжения сжатия – отрицательными. Если известны напряжения на трех взаимно перпендикулярных площадках, то напряжение в точке тоже считается известным.

      Главные напряжения могут быть как положительными, так и отрицательными и действовать по всем направлениям координатных осей.

      Если напряжение действует только в направлении одной из осей, то оно называется одноосным или линейным.

      Если напряжение действует в двух направлениях, то оно называется двухосным, или плоским.

      Если напряжение действует по всем направлениям

Скачать книгу