В сути вещей. Владимир Булыгин
Чтение книги онлайн.
Читать онлайн книгу В сути вещей - Владимир Булыгин страница 5
Рассел:
Существовать – случай пропозициональной функции, которая истинна, по крайней мере, при одном значении переменной. Булыгин:
По-вашему, существует кто-то, кто является автором теории дескрипции, он единственен и этот автор – Вы, Рассел. Формально, найдется такое значение Х, что оно тождественно А. … У меня акценты смещены иначе. Существует «быть автором» и существует «теория дескрипции». Тогда, если «быть автором» единственным образом (эта единственность выражается «теорией дескрипции» и ничем иным) преобразуется в «быть автором теории дескрипции» – Расселом. … В этом контексте, Рассел – то же, что автор, если (и только если) теории дескрипции, и Рассел существует – то же, что существует автор теории дескрипции.
1.7. Суждения и однозначность
В традиционной логике используются связки «есть», «суть», которые иногда и только в количественном смысле совпадают со связкой «то же самое». Но даже в этом случае (смотри рис. 1) логические обороты типа «если b только d, и если d только b, то b и d равны» отражают лишь то, что b и d равночисленны, но не то, что b – то же самое, что d.
Как уже отмечалось, множество в математике трактуется как m={a, s | b}, где b – то общее, что есть как у «a», так и у «s». И где «a» соответственно «не-s» и «s» соответственно «не-a». Это «b» относится к «d» однозначно, а к «a», «s» неоднозначно. Там, где применяется оборот «все», там отношения заменимы на отношения однозначности. Поэтому, «а» – однозначно «b», «b» однозначно «d». Там же, где применяется оборот «некоторые», отношения сводимы как к неоднозначности, так и, в вырожденном случае, к однозначности. Поэтому, с учетом рисунка (смотри рис. 1), «d» – однозначно «b», «b» – неоднозначно «a» (поскольку «b» относится также и к «s»). И лишь с вводом условий «с» и «p» переходы становятся однозначны. Так, «b» при условии «с» однозначно «a», и «b» при условии «p» однозначно «s». И наоборот. Допустим, что «b» с неотраженным на рисунке «не-b», имеет общее «d». Тогда «d» также неоднозначно. А с учетом того, что «a = a» = «a ≠ не-a» = «a = не (не-a)», имеем:
1. Asp → Es(~p). Все S суть P. Следовательно, ни одно S не суть не-P. С учетом рисунка (смотри рис. 1), «a» однозначно «b» → «a» незначно (не имеет отношений неоднозначности и однозначности) «не-b».
2. Esp → As(~p). Ни одно S не суть P. Следовательно, все S суть не-P. С учетом рисунка (смотри рис. 1), «a» незначно «не-b» > «a» однозначно «не (не-b)».
1 Isp → Os(~p). Некоторые S суть P. Следовательно, некоторые S не суть не-P. С учетом рисунка (смотри рис. 1), «b» неоднозначно «a» → не то, что «b» неоднозначно именно «не-a» > «b» неоднозначно не «не-a».
2 Osp → Is(~p). Некоторые S не суть P. Следовательно, некоторые S суть не-P. С учетом рисунка (смотри рис. 1), не то, что «b» неоднозначно именно «a» → «b» неоднозначно «не-a».
1 Asp → Ips. Все S суть P. Следовательно, некоторые P суть S. С учетом рисунка (смотри рис. 1), «a» – однозначно «b» → «b» неоднозначно «a».
2 Esp → Eps. Ни одно S не суть P. Следовательно, ни одно P не суть S. С учетом рисунка (смотри рис. 1), «s» незначно «не-b» > «не-b» незначно «s».
3 Isp → Ips. Некоторые S суть P. Следовательно, некоторые P суть S. Вообще говоря, «b»