До конца времен. Сознание, материя и поиск смысла в меняющейся Вселенной. Брайан Грин

Чтение книги онлайн.

Читать онлайн книгу До конца времен. Сознание, материя и поиск смысла в меняющейся Вселенной - Брайан Грин страница 17

До конца времен. Сознание, материя и поиск смысла в меняющейся Вселенной - Брайан Грин

Скачать книгу

если некоторая физическая система не находится еще в состоянии с максимальной доступной энтропией, вероятность того, что она будет развиваться в направлении этого состояния, чрезвычайно велика. Объяснение, которое хорошо иллюстрируется хлебным ароматом, опирается на самые простые рассуждения: поскольку число конфигураций с большей энтропией многократно превышает их число с меньшей энтропией (по определению энтропии), вероятность того, что случайная толкотня – бесконечные соударения и колебания атомов и молекул – поведет систему по направлению к более высокой, а не к более низкой энтропии, чрезвычайно высока. Процесс этот будет продолжаться до тех пор, пока мы не достигнем конфигурации с самой высокой доступной энтропией. Начиная с этого момента беспорядочное движение молекул заставит, скорее всего, составляющие системы мигрировать между (как правило) громадным числом конфигураций, соответствующих состояниям с максимальной энтропией[30].

      Вот оно, второе начало термодинамики. И вот почему оно верно.

      Энергия и энтропия

      Прочитав описание, вы могли бы подумать, что первое и второе начала термодинамики совершенно различны. В конце концов, одно из них сфокусировано на энергии и ее сохранении, а другое – на энтропии и ее росте. Но существующая между ними глубокая связь подчеркивается фактом, который неявно содержится во втором начале и к которому мы будем еще неоднократно обращаться: не вся энергия одинакова.

      Рассмотрим, к примеру, динамитный патрон. Поскольку вся энергия, заключенная в динамите, содержится в плотной, компактной, упорядоченной химически упаковке, эту энергию несложно обуздать. Поместите динамит туда, где вы хотите эту энергию выгрузить, и подожгите запал. Вот и все. После взрыва вся энергия динамита по-прежнему существует. Это первое начало в действии. Но поскольку энергия динамита превратилась в стремительное и беспорядочное движение широко разлетевшихся частиц, обуздать эту энергию теперь чрезвычайно трудно. Поэтому, хотя суммарное количество энергии не изменилось, характер ее стал совсем другим.

      Мы скажем, что до взрыва энергия динамита была высокого качества: она была сконцентрирована в малом объеме и легко доступна. И наоборот. После взрыва энергия стала низкокачественной: теперь она распределена по большому объему и использовать ее трудно. А поскольку взрывающийся динамит полностью подчиняется второму началу и движется от порядка к беспорядку – от низкой энтропии к высокой, – мы связываем низкую энтропию с высококачественной энергией, а высокую энтропию – с низкокачественной энергией. Да, я понимаю. За всеми этими низко- и высоко- трудно уследить. Однако вывод получается весьма ценным: если первое начало термодинамики гласит, что количество энергии сохраняется во времени, то второе утверждает, что качество этой энергии со временем ухудшается.

      Итак, почему же будущее отличается от прошлого? Ответ, очевидно вытекающий

Скачать книгу


<p>30</p>

Для подкованного в математике читателя скажу, что в основе данного обсуждения (так же как и в большинстве изложений статистической механики в учебниках и исследовательской литературе) лежит ключевое формальное предположение. Для любого заданного макросостояния существуют сопоставимые микросостояния, которые будут развиваться в направлении более низкоэнтропийных конфигураций. К примеру, рассмотрим обращение во времени любого развития событий, результатом которого стало заданное микросостояние, берущее начало в более ранней низкоэнтропийной конфигурации. Такое «перевернутое во времени» микросостояние должно развиваться по направлению к более низкой энтропии. В общем случае мы классифицируем такие микросостояния как «редкие» или «специализированные». Математически такая классификация требует определения меры на пространстве конфигураций. В знакомых ситуациях использование равномерной меры на таком пространстве действительно делает начальные условия со снижением энтропии «редкими» – то есть с малой мерой. Однако, если мера выбрана так, чтобы достигать пиковых значений в окрестностях таких начальных конфигураций со снижением энтропии, они по построению не будут редкими. Насколько нам известно, выбор меры производится эмпирически; для систем того рода, что мы встречаем в повседневной жизни, равномерная мера выдает предсказания, которые хорошо согласуются с наблюдениями; то же можно сказать о введенной нами мере. Но важно отметить, что выбор меры оправдывается экспериментом и наблюдением. Когда мы рассматриваем экзотические ситуации (такие как ранняя Вселенная), для которых у нас нет данных, позволяющих выбрать конкретную меру, приходится признать, что интуиция о «редких» или «оригинальных» состояниях не имеет такой же эмпирической базы.