.

Чтение книги онлайн.

Читать онлайн книгу - страница 35

Автор:
Жанр:
Серия:
Издательство:
 -

Скачать книгу

скоростей эволюции по несинонимичным сайтам в ортологичных генах могут различаться на три-четыре порядка, и это распределение значений гораздо шире, чем распределение скоростей по синонимичным сайтам. Замечательно, что формы графиков распределений по ортологичным белкам исключительно похожи, практически одинаковы для всех изученных клеточных форм жизни, от бактерий и архей до млекопитающих (см. рис. 4–2; Grishin et al., 2000; Wolf et al., 2009). Все эти распределения имеют так называемую логарифмически нормальную форму, то есть распределение логарифма эволюционной скорости близко к нормальному (распределению Гаусса, функция плотности вероятности которого имеет колоколообразную форму). В теории случайных процессов такая форма обычно представляет собой результат произведения многих независимых случайных величин. Универсальность функции распределения среди различных организмов, обладающих глубокими различиями в функциональной организации и сильно различающихся по размеру геномов, представляется неожиданной и может указывать на существование фундаментальных, простых объяснений, которые мы и обсудим в этой главе.

      Рис. 4–1. Распределения скорости эволюции по несинонимичным и синонимичным сайтам в ортологичных генах человека и мыши: dN = скорость эволюции по несинонимичным сайтам; dS = по синонимичным; pdf = функция плотности вероятности. Данные из Wolf et al., 2009; для расчетов использовался пакет PALM (Yang, 2007)

      Рис. 4–2. Распределения скорости эволюции в наборах ортологичных генов бактерий и эукариот; Burkholderia = распределения для ортологов Burkholderia cenocepacia и Burkholderia vietnamiensis (протеобактерия); Homo = для ортологов человека и макаки-резус (приматы). Aspergillus = для ортологов Aspergillus fumigatus и Neosartorya fischeri (аскомицеты). Данные из Lobkovsky et al., 2010; для расчетов использовался пакет PALM (Yang, 2007)

      Прогресс в системной биологии позволил измерить корреляции между скоростью эволюции и всеми возможными молекулярно-фенотипическими величинами, такими как уровень экспрессии, концентрации белков, белок-белковые взаимодействия, фенотипический эффект генной мутации и другими (Koonin and Wolf, 2006). Эти поиски корреляций стали практически самостоятельной областью исследований, цель которых, однако, состоит не в описании самих корреляций, а в построении физически осмысленной модели эволюции геномов и феномов. Было найдено много важных корреляций, что позволило увидеть существование некоторых закономерностей, несмотря на «зашумленность» молекулярно-фенотипических данных (особенно данных, полученных на ранних этапах исследований). На рис. 4–3 представлена простая и наглядная, хоть и неизбежно упрощенная общая картина результатов исследований (Wolf et al., 2006). Обобщение результатов показывает, что существуют два обширных класса переменных:

      1. Интенсивные, эволюционные переменные – различные скорости геномных изменений, включая эволюцию последовательностей, потерю гена, перестройку генома и другие виды эволюционных процессов.

      2. Экстенсивные,

Скачать книгу