Sound. John Tyndall
Чтение книги онлайн.
Читать онлайн книгу Sound - John Tyndall страница 5
This, I may say, is the only experiment on fog which I have found recorded in the appendix.
In 1867 the steam-siren was mounted at Sandy Hook, and examined by Prof. Henry. He compared its action with that of a Daboll trumpet, employing for this purpose a stretched membrane covered with sand, and placed at the small end of a tapering tube which concentrated the sonorous motion upon the membrane. The siren proved most powerful. “At a distance of 50, the trumpet produced a decided motion of the sand, while the siren gave a similar result at a distance of 58.” Prof. Henry also varied the pitch of the siren, and found that in association with its trumpet 400 impulses per second yielded the maximum sound; while the best result with the unaided siren was obtained when the impulses were 360 a second. Experiments were also made on the influence of pressure; from which it appeared that when the pressure varied from 100 lbs. to 20 lbs., the distance reached by the sound (as determined by the vibrating membrane) varied only in the ratio of 61 to 51. Prof. Henry also showed the sound of the fog-trumpet to be independent of the material employed in its construction; and he furthermore observed the decay of the sound when the angular distance from the axis of the instrument was increased. Further observations were made by Prof. Henry and his colleagues in August, 1873, and in August, and September, 1874. In the brief but interesting account of these experiments a hypothetical element appears, which is absent from the record of the earlier observations.
It is quite evident from the foregoing that, in regard to the question of fog-signalling, the Lighthouse Board of Washington have not been idle. Add to this the fact that their eminent chairman gives his services gratuitously, conducting without fee or reward experiments and observations of the character here revealed, and I think it will be conceded that he not only deserves well of his own country, but also sets his younger scientific contemporaries, both in his country and ours, an example of high-minded devotion.
I was quite aware, in a general way, that labors like those now for the first time made public had been conducted in the United States, and this knowledge was not without influence upon my conduct. The first instruments mounted at the South Foreland were of English manufacture; and I, on various accounts, entertained a strong sympathy for their able constructor, Mr. Holmes. From the outset, however, I resolved to suppress such feelings, as well as all other extraneous considerations, individual or national; and to aim at obtaining the best instruments, irrespective of the country which produced them. In reporting, accordingly, on the observations of May 19 and 20, 1873 (our first two days at the South Foreland), these were my words to the Elder Brethren of the Trinity House:
“In view of the reported performance of horns and whistles in other places, the question arises whether those mounted at the South Foreland, and to which the foregoing remarks refer, are of the best possible description. … I think our first duty is to make ourselves acquainted with the best instruments hitherto made, no matter where made; and then, if home genius can transcend them, to give it all encouragement. Great and unnecessary expense may be incurred, through our not availing ourselves of the results of existing experience.
“I have always sympathized, and I shall always sympathize, with the desire of the Elder Brethren to encourage the inventor who first made the magneto-electric light available for lighthouse purposes. I regard his aid and counsel as, in many respects, invaluable to the corporation. But, however original he may be, our duty is to demand that his genius shall be expended in making advances on that which has been already achieved elsewhere. If the whistles and horns that we heard on the 19th and 20th be the very best hitherto constructed, my views have been already complied with; but if they be not—and I am strongly inclined to think that they are not—then I would submit that it behooves us to have the best, and to aim at making the South Foreland, both as regards light and sound, a station not excelled by any other in the world.”
On this score it gives me pleasure to say that I never had a difficulty with the Elder Brethren. They agreed with me; and two powerful steam-whistles, the one from Canada, the other from the United States, together with a steam-siren—also an American instrument—were in due time mounted at the South Foreland. It will be seen in Chapter VII. that my strongest recommendation applies to an instrument for which we are indebted to the United States.
In presence of these facts, it will hardly be assumed that I wish to withhold from the Lighthouse Board of Washington any credit that they may fairly claim. My desire is to be strictly just; and this desire compels me to express the opinion that their Report fails to establish the inordinate claim made in its first paragraph. It contains observations, but contradictory observations; while as regards the establishment of any principle which should reconcile the conflicting results, it leaves our condition unimproved.
But I willingly turn aside from the discussion of “claims” to the discussion of science. Inserted, as a kind of intrusive element, into the Report of Prof. Henry, is a second Report by General Duane, founded on an extensive series of observations made by him in 1870 and 1871. After stating with distinctness the points requiring decision, the General makes the following remarks:
“Before giving the results of these experiments, some facts will be stated which will explain the difficulties of determining the power of a fog-signal.
“There are six steam fog-whistles on the coast of Maine: these have been frequently heard at a distance of twenty miles, and as frequently cannot be heard at the distance of two miles, and this with no perceptible difference in the state of the atmosphere.
“The signal is often heard at a great distance in one direction, while in another it will be scarcely audible at the distance of a mile. This is not the effect of wind, as the signal is frequently heard much further against the wind than with it.2 For example, the whistle on Cape Elizabeth can always be distinctly heard in Portland, a distance of nine miles, during a heavy northeast snowstorm, the wind blowing a gale directly from Portland toward the whistle.3
“The most perplexing difficulties, however, arise from the fact that the signal often appears to be surrounded by a belt, varying in radius from one mile to one mile and a half, from which the sound appears to be entirely absent. Thus, in moving directly from a station the sound is audible for the distance of a mile, is then lost for about the same distance, after which it is again distinctly heard for a long time. This action is common to all ear-signals, and has been at times observed at all the stations, at one of which the signal is situated on a bare rock twenty miles from the mainland, with no surrounding objects to affect the sound.”
It is not necessary to assume here the existence of a “belt,” at some distance from the station. The passage of an acoustic cloud over the station itself would produce the observed phenomenon.
Passing over the record of many other valuable observations in the Report of General Duane, I come to a few very important remarks which have a direct bearing upon the present question:
“From an attentive observation,” writes the General, “during three years, of the fog-signals on this coast, and from the reports received from the captains and pilots of coasting vessels, I am convinced that, in some conditions of the atmosphere, the most powerful signals will be at times unreliable.4
“Now it frequently occurs that a signal which, under ordinary circumstances, would be audible at the distance of fifteen miles, cannot be heard from a vessel at the distance of a single mile. This is probably due to the reflection mentioned by Humboldt.
“The temperature of the air over the land where the fog-signal is located being very different from that over the sea, the sound, in passing from the former to the latter, undergoes reflection at their surface of contact. The correctness