Experiments and Observations on Different Kinds of Air. Joseph Priestley

Чтение книги онлайн.

Читать онлайн книгу Experiments and Observations on Different Kinds of Air - Joseph Priestley страница 6

Автор:
Серия:
Издательство:
Experiments and Observations on Different Kinds of Air - Joseph Priestley

Скачать книгу

air had been discovered by Dr. Macbride of Dublin, after an observation of Sir John Pringle's, which led to it, to be in a considerable degree antiseptic; and since it is extracted in great plenty from fermenting vegetables, he had recommended the use of wort (that is an infusion of malt in water) as what would probably give relief in the sea-scurvy, which is said to be a putrid disease.

      Dr. Brownrigg had also discovered that the same species of air is contained in great quantities in the water of the Pyrmont spring at Spa in Germany, and in other mineral waters, which have what is called an acidulous taste, and that their peculiar flavour, briskness, and medicinal virtues, are derived from this ingredient.

      Dr. Hales, without seeming to imagine that there was any material difference between these kinds of air and common air, observed that certain substances and operations generate air, and others absorb it; imagining that the diminution of air was simply a taking away from the common mass, without any alteration in the properties of what remained. His experiments, however, are so numerous, and various, that they are justly esteemed to be the solid foundation of all our knowledge of this subject.

      Mr. Cavendish had exactly ascertained the specific gravities of fixed and inflammable air, shewing the former of them to be 1–½ heavier than common air, and the latter ten times lighter. He also shewed that water would imbibe more than its own bulk of fixed air.

      Lastly, Mr. Lane discovered that water thus impregnated with fixed air will dissolve a considerable quantity of iron, and thereby become a strong chalybeate.

      These, I would observe, are by no means all the discoveries concerning air that have been made by the gentlemen whose names I have mentioned, and still less are they all that have been made by others; but they comprise all the previous knowledge of this subject that is necessary to the understanding of this treatise; except a few particulars, which will be mentioned in the course of the work, and which it is, therefore, unnecessary to recite in this place.

       Table of Contents

       Table of Contents

      Rather than describe at large the manner in which every particular experiment that I shall have occasion to recite was made, which would both be very tedious, and require an unnecessary multiplicity of drawings, I think it more adviseable to give, at one view, an account of all my apparatus and instruments, or at least of every thing that can require a description, and of all the different operations and processes in which I employ them.

      It will be seen that my apparatus for experiments on air is, in fact, nothing more than the apparatus of Dr. Hales, Dr. Brownrigg, and Mr. Cavendish, diversified, and made a little more simple. Yet notwithstanding the simplicity of this apparatus, and the ease with which all the operations are conducted, I would not have any person, who is altogether without experience, to imagine that he shall be able to select any of the following experiments, and immediately perform it, without difficulty or blundering. It is known to all persons who are conversant in experimental philosophy, that there are many little attentions and precautions necessary to be observed in the conducting of experiments, which cannot well be described in words, but which it is needless to describe, since practice will necessarily suggest them; though, like all other arts in which the hands and fingers are made use of, it is only much practice that can enable a person to go through complex experiments, of this or any other kind, with ease and readiness.

      For experiments in which air will bear to be confined by water, I first used an oblong trough made of earthen ware, as a fig. 1. about eight inches deep, at one end of which I put thin flat stones, b. b. about an inch, or half an inch, under the water, using more or fewer of them according to the quantity of water in the trough. But I have since found it more convenient to use a larger wooden trough, of the same general shape, eleven inches deep, two feet long, and 1–½ wide, with a shelf about an inch lower than the top, instead of the flat stones above-mentioned. This trough being larger than the former, I have no occasion to make provision for the water being higher or lower, the bulk of a jar or two not making so great a difference as did before.

      The several kinds of air I usually keep in cylindrical jars, as c, c, fig. 1, about ten inches long, and 2–½ wide, being such as I have generally used for electrical batteries, but I have likewise vessels of very different forms and sizes, adapted to particular experiments.

      When I want to remove vessels of air from the large trough, I place them in pots or dishes, of various sizes, to hold more or less water, according to the time that I have occasion to keep the air, as fig. 2. These I plunge in water, and slide the jars into them; after which they may be taken out together, and be set wherever it shall be most convenient. For the purpose of merely removing a jar of air from one place to another, where it is not to stand longer than a few days, I make use of common tea-dishes, which will hold water enough for that time, unless the air be in a state of diminution, by means of any process that is going on in it.

      If I want to try whether an animal will live in any kind of air, I first put the air into a small vessel, just large enough to give it room to stretch itself; and as I generally make use of mice for this purpose, I have found it very convenient to use the hollow part of a tall beer-glass, d fig. 1, which contains between two and three ounce measures of air. In this vessel a mouse will live twenty minutes, or half an hour.

      For the purpose of these experiments it is most convenient to catch the mice in small wire traps, out of which it is easy to take them, and holding them by the back of the neck, to pass them through the water into the vessel which contains the air. If I expect that the mouse will live a considerable time, I take care to put into the vessel something on which it may conveniently sit, out of the reach of the water. If the air be good, the mouse will soon be perfectly at its ease, having suffered nothing by its passing through the water. If the air be supposed to be noxious, it will be proper (if the operator be desirous of preserving the mice for farther use) to keep hold of their tails, that they may be withdrawn as soon as they begin to shew signs of uneasiness; but if the air be thoroughly noxious, and the mouse happens to get a full inspiration, it will be impossible to do this before it be absolutely irrecoverable.

      In order to keep the mice, I put them into receivers open at the top and bottom, standing upon plates of tin perforated with many holes, and covered with other plates of the same kind, held down by sufficient weights, as fig. 3. These receivers stand upon a frame of wood, that the fresh air may have an opportunity of getting to the bottoms of them, and circulating through them. In the inside I put a quantity of paper or tow, which must be changed, and the vessel washed and dried, every two or three days. This is most conveniently done by having another receiver, ready cleaned and prepared, into which the mice may be transferred till the other shall be cleaned.

      Mice must be kept in a pretty exact temperature, for either much heat or much cold kills them presently. The place in which I have generally kept them is a shelf over the kitchen fire-place where, as it is usual in Yorkshire, the fire never goes out; so that the heat varies very little, and I find it to be, at a medium, about 70 degrees of Fahrenheit's thermometer. When they had been made to pass through the water, as they necessarily must be in order to a change of air, they require, and will bear a very considerable degree of heat, to warm and dry them.

      I found, to my great surprize, in the course of these experiments, that mice will live intirely without water; for though I have kept them for three or four months, and have

Скачать книгу