Na-ion Batteries. Laure Monconduit

Чтение книги онлайн.

Читать онлайн книгу Na-ion Batteries - Laure Monconduit страница 24

Na-ion Batteries - Laure Monconduit

Скачать книгу

Li2/3[Mn1/3Fe2/3]O2, with mixed stacking states. Solid State Ionics, 161(1–2), 31–39.

      Mendiboure, A., Delmas, C., and Hagenmuller, P. (1985). Electrochemical intercalation and deintercalation of NaxMnO2 bronzes. Journal of Solid State Chemistry, 57(3), 323–331.

      Mishra, S.K. and Ceder, G. (1999). Structural stability of lithium manganese oxides. Physical Review B, 59(9), 6120–6130.

      Mizushima, K., Jones, P.C., Wiseman, P.J., and Goodenough, J.B. (1980). Lithium cobalt oxide(LixCoO2) (0<x<1): A new cathode material for batteries of high energy density.

      Materials Research Bulletin, 15(6), 783–789.

      Momma, K. and Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272–1276.

      Monyoncho, E. and Bissessur, R. (2013). Unique properties of alpha-NaFeO2: De-intercalation of sodium via hydrolysis and the intercalation of guest molecules into the extract solution. Materials Research Bulletin, 48(7), 2678–2686.

      Mortemard De Boisse, B., Carlier, D., Guignard, M., Bourgeois, L., and Delmas, C. (2014). P2-NaxMn1/2Fe1/2O2 phase used as positive electrode in Na batteries: Structural changes induced by the electrochemical (de)intercalation process. Inorganic Chemistry, 53(20), 11197–11205.

      Mortemard de Boisse, B. M., Liu, G., Ma, J., Nishimura, S. I., Chung, S. C., Kiuchi, H., and Yamada, A. (2016). Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode. Nature communications, 7(1), 1–9

      Mortemard de Boisse, B., Nishimura, S. I., Watanabe, E., Lander, L., Tsuchimoto, A., Kikkawa, J., and Yamada, A. (2018). Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na4/7− x [□ 1/7Mn6/7] O2 (□: Mn Vacancy). Advanced Energy Materials, 8(20), 1800409.

      Mortemard de Boisse, B. M., Reynaud, M., Ma, J., Kikkawa, J., Nishimura, S. I., Casas-Cabanas, M., and Yamada, A. (2019). Coulombic self-ordering upon charging a largecapacity layered cathode material for rechargeable batteries. Nature Communications, 10(1), 1–7.

      Mu, L.Q., Hou, Q.P., Yang, Z.Z., Zhang, Y., Rahman, M.M., Kautz, D.J., Sun, E., Du, X.W., Du, Y.G., Nordlund, D., and Lin, F. (2019). Water-processable P2-Na0.67Ni0.22Cu0.11Mn0.56Ti0.11O2 cathode material for sodium ion batteries. Journal of the Electrochemical Society, 166(2), A251–A257.

      Nanba, Y., Iwao, T., De Boisse, B.M., Zhao, W.W., Hosono, E., Asakura, D., Niwa, H., Kiuchi, H., Miyawaki, J., Harada, Y., Okubo, M., and Yamada, A. (2016). Redox potential paradox in NaxMO2 for sodium-ion battery cathodes. Chemistry of Materials, 28(4), 1058–1065.

      Newman, G.H. and Klemann, L.P. (1980). Ambient-temperature cycling of an Na-TiS2 cell. Journal of the Electrochemical Society, 127(10), 2097–2099.

      Nitta, K., Inazawa, S., Sakai, S., Fukunaga, A., Itani, E., Numata, K., Hagiwara, R., and Nohira, T. (2013). Development of molten salt electrolyte battery. SEI Tech. Rev., 76, 27–33.

      Nose, M., Shiotani, S., Nakayama, H., Nobuhara, K., Nakanishi, S., and Iba, H. (2013). Na4Co2.4Mn0.3Ni0.3(PO4)2P2O7: High potential and high capacity electrode material for sodium-ion batteries. Electrochemistry Communications, 34, 266–269.

      Okada, S., Takahashi, Y., Kiyabu, T., Doi, T., Yamaki, J.-I., and Nishida, T. (eds) (2006). Layered transition metal oxides as cathodes for sodium secondary battery. 210th ECS Meeting, Cancun, Mexico. The Electrochemical Society.

      Orlandi, F., Aza, E., Bakaimi, I., Kiefer, K., Klemke, B., Zorko, A., and Manuel, P. (2018). Incommensurate atomic and magnetic modulations in the spin-frustrated β− NaMnO2 triangular lattice. Physical Review Materials, 2(7), 074407.

      Ortiz-Vitoriano, N., Drewett, N.E., Gonzalo, E., and Rojo, T. (2017). High performance manganese-based layered oxide cathodes: Overcoming the challenges of sodium ion batteries. Energy & Environmental Science, 10(5), 1051–1074.

      Pan, H.L., Hu, Y.S., and Chen, L.Q. (2013). Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science, 6(8), 2338–2360.

      Parant, J.-P., Olazcuaga, R., Devalette, M., Fouassier, C., and Hagenmuller, P. (1971). Sur quelques nouvelles phases de formule NaxMnO2 (x ⩽ 1). Journal of Solid State Chemistry, 3(1), 1–11.

      Park, S., Yoon, W.S., and Vogt, T. (2007). Structure and magnetism of the mono-layer hydrate Na0.3NiO2·0.7H2O. Solid State Communications, 142(1–2), 75–79.

      Paulsen, J.M. and Dahn, J.R. (1999). Studies of the layered manganese bronzes, Na2/3[Mn1-xMx]O2 with M = Co, Ni, Li, and Li2/3[Mn1-xMx]O2 prepared by ion-exchange. Solid State Ionics, 126(1-2), 3–24.

      Paulsen, J.M., Thomas, C.L., and Dahn, J.R. (2000). O2 structure Li2/3[Ni1/3Mn2/3]O2: A new layered cathode material for rechargeable lithium batteries I. Electrochemical properties. Journal of the Electrochemical Society, 147(3), 861–868.

      Qi, X., Wang, Y., Jiang, L., Mu, L., Zhao, C., Liu, L., Hu, Y.-S., Chen, L., and Huang, X. (2016). Sodium-deficient O3-Na0.9[Ni0.4MnxTi0.6−x]O2 layered-oxide cathode materials for sodium-ion batteries. Particle & Particle Systems Characterization, 33(8), 538–544.

      Rozier, P., Sathiya, M., Paulraj, A.-R., Foix, D., Desaunay, T., Taberna, P.-L., Simon, P., and Tarascon, J.-M. (2015). Anionic redox chemistry in Na-rich Na2Ru1−ySnyO3 positive electrode material for Na-ion batteries. Electrochemistry Communications, 53(0), 29–32.

      Rudnick, R.L. and Gao, S. (2014). 4.1–-Composition of the continental crust. In Treatise on Geochemistry (Second Edition), Holland, H.D., Turekian, K.K. (eds). Elsevier, Oxford, 1–51.

      Rüdorff, W. and Becker, H. (1954). Die Strukturen von LiVO2, NaVO2, LiCrO2 und NaCrO2. Zeitschrift für Naturforschung B, 9(9), 614–615.

      Sathiya, M., Jacquet, Q., Doublet, M. L., Karakulina, O. M., Hadermann, J., and Tarascon, J. M. (2018). A chemical approach to raise cell voltage and suppress phase transition in O3 sodium layered oxide electrodes. Advanced Energy Materials, 8(11), 1702599.

      Scholder, R. and Kyri, H. (1952). Über die Oxydation von Mangan(II)‐hydroxyd mit Sauerstoff in konzentrierten Laugen. Zeitschrift für anorganische und allgemeine Chemie, 270(1-4), 56–68.

      Shacklette,

Скачать книгу