Восемь этюдов о бесконечности. Математическое приключение. Хаим Шапира

Чтение книги онлайн.

Читать онлайн книгу Восемь этюдов о бесконечности. Математическое приключение - Хаим Шапира страница 7

Восемь этюдов о бесконечности. Математическое приключение - Хаим Шапира

Скачать книгу

увы, существами до боли конечными. Как сказал Паскаль:

      Человек – всего лишь тростник, слабейшее из творений природы, но он – тростник мыслящий[5].

А теперь еще разок

      Если вы по-прежнему не уверены в том, что (во всех этих версиях) в полночь в комнате будет бесконечно много мячей, мне остается только пустить в дело тяжелую артиллерию и предложить вам следующую, последнюю версию этого парадокса: предположим, что мячи не пронумерованы; все они – самые обычные белые теннисные мячики.

      Наличие или отсутствие нумерации не должно никак повлиять на количество мячей, оказавшихся в комнате к полуночи.

      Теперь все должно быть кристально ясно. Если итоговое число мячей на каждом шаге увеличивается, а количество таких шагов до 0:00 бесконечно, то в полночь должно получиться бесконечное число мячей.

      Теперь мы можем ответить и на вопрос о том, какие именно мячи будут в комнате.

      В ней будет бесконечно много… белых мячей!{4}

      Последняя версия принципиально отличается от всех предыдущих тем, что в ней нет правила, определяющего, какие именно мячи выбрасываются из комнаты. Когда у мячей есть номера, это дает нам возможность предлагать правила. Но теперь все мячи одинаковы, и мы вынуждены выбирать, какие из них выбросить, случайным образом.

      Первое апреля, или Логика в доме старшего брата

      Знаменитый логик, фокусник и математик Рэймонд Смаллиан (1919–2017) (он, к слову сказать, был еще и концертным пианистом: его исполнение Баха можно послушать на YouTube) рассказывал, как он впервые столкнулся с концепцией логики. Это случилось однажды 1 апреля, когда Рэймонд был еще маленьким мальчиком. Накануне вечером старший брат будущего логика пообещал, что разыграет его (как обычно и делают первого апреля), и заверил, что Рэймонд не сумеет избежать розыгрыша, как бы он ни пытался.

      Рэймонд воспринял эту угрозу очень серьезно и решил, что не доставит брату такого удовольствия и не позволит себя разыграть. Подумав немного, он решил, что лучшим способом уберечься от первоапрельского розыгрыша будет засесть в своей комнате и не выходить из нее весь день.

      Умно́, не правда ли?

      Рэймонд пошел в свою комнату, закрыл дверь и сидел там, изнывая от скуки, час за часом… до самой полуночи. Потом он гордо вышел из комнаты и торжествующе объявил брату, что его план провалился. Брат ответил: «А вот и нет! Я тебя разыграл! Ты думал, что я тебя разыграю, а я тебя так и не разыграл, значит, я тебя разыграл! Ха-ха-ха!»

      До самой смерти Рэймонд Смаллиан не был уверен, что же все-таки произошло: удалось или не удалось брату его разыграть. А вы как думаете?

      Шоколад и яд

      Эта весьма простая игра больше всего известна под названием Chomp[6]. Вариант этой игры на плитке шоколада изобрел ныне покойный американский математик Дэвид Гейл, а название Chomp придумал Мартин Гарднер. Играют

Скачать книгу


<p>5</p>

Здесь и далее цит. по: Паскаль Б. Мысли / Пер. с фр. Ю. А. Гинзбург. М.: Изд-во имени Сабашниковых, 1995.

<p>4</p>

Многие математики с этим не согласятся. Они скажут, что мы говорим здесь о пределах сходимости и все зависит от того, с каким типом сходимости мы имеем дело. Читателям, не принадлежащим к числу математиков, может быть полезно найти в «Википедии» статью о концепции Supertask [ «суперзадачи» – соответствующей статьи на русском языке в «Википедии» пока что нет. – Примеч. перев.]: это задача, требующая выполнения бесконечного числа операций за конечный временной промежуток. Мы еще встретимся с этой концепцией позднее, когда познакомимся с Зеноном, Ахиллесом и черепахой.

<p>6</p>

Звукоподражательное слово, передающее чавканье. Дело в том, что в эту игру можно играть на разделенной на дольки плитке шоколада: игрок, делающий очередной ход, отламывает и съедает те «клетки», которые он занимает по правилам игры. В русском варианте (Гарднер М. Математические новеллы / Пер. с англ. Ю. А. Данилова. М.: Мир, 1974) игра называется «Щелк!».