The Phase Rule and Its Applications. Alexander Findlay

Чтение книги онлайн.

Читать онлайн книгу The Phase Rule and Its Applications - Alexander Findlay страница 15

Автор:
Серия:
Издательство:
The Phase Rule and Its Applications - Alexander Findlay

Скачать книгу

by the reactions or changes which take place within the system (according to the theorems of van't Hoff and Le Chatelier). We now proceed to discuss what these changes are, and shall consider first the effect of alteration of the temperature at constant volume and constant pressure, and then the effect of alteration of the pressure both when the temperature remains constant and when it varies.

      When the volume is kept constant, the effect of the addition of heat to a system at the triple point S-L-V differs somewhat according as there is an increase or diminution of volume when the solid passes into the liquid state. In the former and most general case (Fig. 14), addition of heat will cause a certain amount of the solid phase to melt, whereby the heat which is added becomes latent; the temperature of the system therefore does not rise. Since, however, the melting of the solid is accompanied by an increase of volume, whereby an increase of pressure would result, a certain portion of the vapour must condense to liquid, in order that the pressure may remain constant. The total effect of addition of heat, therefore, is to cause both solid and vapour to pass into liquid, i.e. there occurs the change S + V

L. It will, therefore, depend on the relative quantities of solid and vapour, which will disappear first. If the solid disappears first, then we shall pass to the system L-V; if vapour disappears first, we shall obtain the system S-L. Withdrawal of heat causes the reverse change, L
S + V; at all temperatures below the triple point the liquid is unstable or metastable (p. 30).

      When fusion is accompanied by a diminution of volume (e.g. ice, Fig. 13), then, since the melting of the solid phase would decrease the total volume, i.e. would lower the pressure, a certain quantity of the solid must also pass into vapour in order that the pressure may be maintained constant. On addition of heat, therefore, there occurs the reaction S

L + V; withdrawal of heat causes the reverse change L + V
S. Above the temperature of the triple point the solid cannot exist; below the triple point both systems, S-L and S-V, can exist, and it will therefore depend on the relative amounts of liquid and vapour which of these two systems is obtained on withdrawing heat from the system at constant volume.

      The same changes in the phases occur when heat is added or withdrawn at constant pressure, so long as the three phases are present. Continued addition of heat, however, at constant pressure will ultimately cause the formation of the bivariant system vapour alone; continued withdrawal of heat will ultimately cause the formation of solid alone. This will be readily understood from Fig. 15. The dotted line D′OD is a line of constant pressure; on adding heat, the system passes along the line OD into the region of vapour; on heat being withdrawn, the system passes along OD′ into the area of solid.

      

Fig. 15.

      Similar changes are produced when the volume of the system is altered. Alteration of volume may take place either while transference of heat to or from the system is cut off (adiabatic change), or while such transference may occur (isothermal change). In the latter case, the temperature of the system will remain constant; in the former case, since at the triple point the pressure must be constant so long as the three phases are present, increase of volume must be compensated by the evaporation of liquid. This, however, would cause the temperature to fall (since communication of heat from the outside is supposed to be cut off), and a portion of the liquid must therefore freeze. In this way the latent heat of evaporation is counterbalanced by the latent heat of fusion. As the result of increase of volume, therefore, the process occurs L

S + V. Diminution of volume, without transference of heat, will bring about the opposite change, S + V
L. In the former case there is ultimately obtained the univariant system S-V; in the latter case there will be obtained either S-L or L-V according as the vapour or solid phase disappears first.

      This argument holds good for both types of triple point shown in Figs. 13 and 14 (p. 57). A glance at these figures will show that increase of volume (diminution of pressure) will lead ultimately to the system S-V, for at pressures lower than that of the triple point, the liquid phase cannot exist. Decrease of volume (increase of pressure), on the other hand, will lead either to the system S-L or L-V, because these systems can exist at pressures higher than that of the triple point. If the vapour phase disappears and we pass to the curve S-L, continued diminution of volume will be accompanied by a fall in temperature in the case of systems of the first type (Fig. 13), and by a rise in temperature in the case of systems of the second type (Fig. 14).

      

Fig. 17.

      

Fig. 16.

      Lastly, if the temperature is maintained constant, i.e. if heat can pass into or out of the system, then on changing the volume the same changes in the phases will take place as described above until one of the phases has disappeared. Continued increase of volume (decrease of pressure) will then cause the disappearance of a second phase, the system passing along the dotted line OE′ (Figs. 16, 17), so that ultimately there remains only the vapour phase. Conversely, diminution of volume (increase of pressure) will ultimately lead either to solid (Fig. 16) or to liquid alone (Fig. 17), the system passing along the dotted line OE.

      In discussing the alterations which may take place at the triple point with change of temperature and pressure, we have considered only the triple point S-L-V. The same reasoning, however, applies, mutatis mutandis, to all other triple points, so that if the specific volumes of the phases are known, and the sign of the heat effects which accompany the transformation of one phase into the other, it is possible to predict (by means of the theorem of Le Chatelier) the changes which will be produced in the system by alteration of the pressure and temperature.

      In all cases of transformation at the triple point, it should be noted that all three phases are involved in the change,[107] and not two only; the fact that in the case, say, of the transformation from solid to liquid, or liquid to solid, at the melting point with change of temperature, only these two phases appear to be affected, is due to there generally being a large excess of the vapour phase present and to the prior disappearance therefore of the solid or liquid phase.

      In the case of triple points at which two solid phases are in equilibrium with liquid, other arrangements of the curves around the triple point are found. It is, however, unnecessary to give a general treatment of these here, since the principles which have been applied to the triple point S-L-V can also be applied to the other triple points.[108]

      Triple Point Solid—Solid—Vapour.—The triple point solid—solid—vapour is one which is of considerable importance. Examples of such a triple point have already been given in sulphur and tin, and a list of other substances capable of yielding two solid phases is given below. The triple point S-S-V is not precisely the same as the transition point, but is very nearly so. The transition point is the temperature at which the relative stability of the two solid phases undergoes change, when the vapour phase is absent and the pressure is 1 atm.; whereas at the triple point the pressure is that of the system itself. The transition point, therefore, bears the same relation to the triple point S-S-V as the melting point to the triple point S-L-V.

      

      In

Скачать книгу