The Mathematics of Fluid Flow Through Porous Media. Myron B. Allen, III

Чтение книги онлайн.

Читать онлайн книгу The Mathematics of Fluid Flow Through Porous Media - Myron B. Allen, III страница 21

The Mathematics of Fluid Flow Through Porous Media - Myron B. Allen, III

Скачать книгу

comma t right-parenthesis"/>, the material derivative is simply the partial derivative with respect to t:

StartFraction upper D Superscript alpha Baseline f Over upper D t EndFraction left-parenthesis bold upper X Subscript alpha Baseline comma t right-parenthesis equals StartFraction partial-differential f Over partial-differential t EndFraction left-parenthesis bold upper X Subscript alpha Baseline comma t right-parenthesis period

      For functions of left-parenthesis bold x comma t right-parenthesis, an application of the chain rule similar to that employed in Section 2.1 for simple continua yields

StartFraction upper D Superscript alpha Baseline f Over upper D t EndFraction left-parenthesis bold x comma t right-parenthesis equals StartFraction partial-differential f Over partial-differential t EndFraction left-parenthesis bold x comma t right-parenthesis plus bold v Subscript alpha Baseline left-parenthesis bold x comma t right-parenthesis dot nabla f left-parenthesis bold x comma t right-parenthesis period

      2.5.2 Densities and Volume Fractions

      As with single continua, we assign to each constituent script upper B Subscript alpha a mass density rho Subscript alpha Baseline left-parenthesis bold x comma t right-parenthesis such that the mass of the constituent in any measurable region script upper V of three‐dimensional space at time t is

integral Underscript script upper V Endscripts rho Subscript alpha Baseline left-parenthesis bold x comma t right-parenthesis d v period

      Engineers call rho Subscript alpha the bulk density of constituent script upper B Subscript alpha; it gives the mass of the constituent per unit of total volume in the continuum.

Schematic illustration of the sketch of a fluid-saturated porous medium showing three possible representative elementary volumes.

      Under this assumption, we assign to each constituent script upper B Subscript alpha a volume fraction phi Subscript alpha Baseline left-parenthesis bold x comma t right-parenthesis. This function gives the fraction of any region script upper V of three‐dimensional space occupied by material from the constituent as

integral Underscript script upper V Endscripts phi Subscript alpha Baseline left-parenthesis bold x comma t right-parenthesis d v period Graph depicts the conceptual plot of REV-averaged volume fraction versus radius of averaging window, showing how averaged values can stabilize for a range of averaging radii. sigma-summation Underscript alpha equals 1 Overscript upper N Endscripts phi Subscript alpha Baseline equals 1 period

      In this case, we define the true density of constituent script upper B Subscript alpha as

gamma Subscript alpha Baseline equals StartFraction rho Subscript alpha Baseline Over phi Subscript alpha Baseline EndFraction period

      The bulk density rho Subscript alpha has dimension (mass of alpha)slash(volume of continuum), while the true density gamma Subscript alpha has dimension (mass of

Скачать книгу