Mantle Convection and Surface Expressions. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Mantle Convection and Surface Expressions - Группа авторов страница 51

Mantle Convection and Surface Expressions - Группа авторов

Скачать книгу

2000). At low vibrational frequencies, these collective motions are called acoustic phonons and resemble sound waves. Their velocities can be derived from an IXS experiment by setting the scattering geometry to sample acoustic phonons that propagate along a defined direction and with a defined wavelength and calculating their frequencies from the measured energy shifts of inelastically scattered X‐rays. The energy distribution of lattice vibrations, the phonon density of states, can be studied by exciting the atomic nuclei of suitable isotopes and counting the reemitted X‐rays (Sturhahn, 2004). Because the atomic nuclei are coupled to lattice vibrations, a small fraction of them absorbs X‐rays at energies that are modulated away from the nuclear resonant energy reflecting the energy distribution of phonons that involve motions of the resonant isotope. 57Fe is by far the most important isotope in geophysical applications of nuclear resonant inelastic X‐ray scattering (NRIXS). Both IXS and NRIXS can be performed on samples compressed in diamond anvil cells to constrain the elastic properties of single crystals or polycrystalline materials (Fiquet et al., 2004; Sturhahn & Jackson, 2007). Given the low efficiency of inelastic X‐ray scattering in general and the selective sensitivity of NRIXS to Mössbauer‐active isotopes such as 57Fe, many IXS and NRIXS studies focused on iron‐bearing materials, including potential alloys of Earth’s core (Antonangeli et al., 2012; Badro et al., 2007; Fiquet et al., 2001) and minerals relevant to Earth’s lower mantle (Antonangeli et al., 2011; Finkelstein et al., 2018; Lin et al., 2006; Wicks et al., 2017, 2010).

equation

      Sample sizes in diamond anvil cells are very small, and samples are surrounded by heater and thermal insulation materials in multi‐anvil presses so that, in most cases, intense and focused X‐rays from synchrotron sources are required to generate diffraction patterns of suitable quality. Converting the unit cell volume to density requires information on the atomic content of the unit cell and hence on the chemical composition of the material. Uncertainties on molar masses of chemically complex materials typically subvert the high precision on unit cell volumes achievable with modern X‐ray diffraction techniques. Note also that densities based on X‐ray diffraction do not capture amorphous materials or porosity that might be present along grain boundaries or cracks in polycrystalline materials. A rather new technique to determine the bulk modulus uses synchrotron X‐ray diffraction to capture the elastic response of a polycrystalline sample that is subjected to cyclic loading at seismic frequencies. For this type of experiment, a DAC is attached to a piezoelectric actuator that generates small pressure oscillations. The resulting oscillations in unit cell volume can be measured by recording the time-resolved diffraction of intense X-rays with sufficiently fast and sensitive detectors and be analyzed to constrain the bulk modulus. Marquardt et al. (2018) successfully used this technique to probe the softening of the bulk modulus across the spin transition in ferropericlase at seismic frequencies. When combined with resistive heating, piezo‐driven DACs may facilitate cyclic loading experiments at combined high pressures and high temperatures (Méndez et al., 2020).

      

      Quantum‐mechanical computations and molecular dynamic simulations have evolved to powerful tools in predicting the elastic properties of minerals at high pressures and high temperatures and complement experiments for conditions that are not readily accessible with current experimental methods (Karki et al., 2001a; Stixrude et al., 1998). First‐principle calculations are based on the Schrödinger equation:

equation

      that yields the total energy E of a system of electrons and atomic nuclei as the eigenvalue of the Hamiltonian operator images that is applied to the multi‐particle wave function Ψ(r). In density functional theory (DFT), the Hamiltonian operator is broken down into contributions of the kinetic energy T of non‐interacting electrons, the electrostatic potential energy EC, and the exchange‐correlation energy EXC that describes the electron‐electron interaction, all of which are functionals of the electron density n(r) that changes with the location r (Hohenberg and Kohn, 1964; Kohn and Sham, 1965). The total energy can then be expressed in terms of the electron density:

equation

      While the functionals of kinetic and potential energies can be evaluated exactly, formulations for the exchange‐correlation energy rely on approximations (Karki et al., 2001a; Perdew & Ruzsinszky, 2010; Stixrude et al., 1998). These approximations allow computing the total energy E for a given arrangement of atoms, i.e., for a crystal structure. The forces acting between atoms, also called Hellmann‐Feynman forces, can be found by evaluating the changes in energy that result from small perturbations of the atomic arrangement (Baroni et al., 2001). When the perturbation of the atomic arrangement is chosen to correspond to a homogeneous strain, the resulting stresses (Nielsen and Martin, 1985) and hence elastic properties can be derived (Baroni et al., 1987a, 2001; Wentzcovitch et al., 1995). Alternatively, an external pressure can be applied to the simulation cell, and the resulting forces and stresses be minimized by relaxing the atomic positions and the shape of the simulation cell (Wentzcovitch et al., 1995, 1993). Note that, apart from being intentionally displaced or being relaxed to their equilibrium configuration, atomic nuclei remain static in these calculations. The results of such static DFT calculations can in principle be compared with those of experiments at ambient temperature as thermal contributions at 298 K are expected to be fairly small for most materials.

Скачать книгу