Mantle Convection and Surface Expressions. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Mantle Convection and Surface Expressions - Группа авторов страница 55

Mantle Convection and Surface Expressions - Группа авторов

Скачать книгу

extrapolating elastic properties beyond the compositional limits defined by available experimental data, however, uncertainties rise substantially. Note that bridgmanite compositions falling outside the compositional range as delimited by experiments imply negative molar fractions in terms of the experimental compositions that form the basis of composition vectors. As a result, the Reuss bound may exceed the Voigt bound and dlnv < 0. As mentioned above, such extrapolations may exert strong leverages on sound wave velocities and need to be restricted to compositions that remain close to the compositional limits defined by available data.

Schematic illustration of variations in P-wave (a) and S-wave (b) velocities of bridgmanite solid solutions at 40 GPa and 2000 K that reflect the differences between the Voigt and Reuss bounds when combining the elastic properties of bridgmanite compositions (triangles). Each large ternary diagram spans the section marked black in the small full ternary diagram next to each large ternary diagram.

      The finite‐strain formalism outlined in Section 3.2 describes a smooth variation of elastic properties and pressure with finite strain and temperature. Phase transitions interrupt these smooth trends as, at the phase transition, a new phase with different elastic properties becomes stable. The series of phase transitions in (Mg,Fe)2SiO4 compounds from olivine (α) to wadsleyite (β) to ringwoodite (γ), for example, results in abrupt changes of elastic properties and density when going from one polymorph to another. Such abrupt changes in elastic properties typically result from first‐order phase transitions that involve a reorganization of the atomic structure of a compound. The elastic properties of the compound are then best described by constructing a finite‐strain model for each polymorph. If the phase transition consists of a gradual distortion of the crystal structure, for example by changing the lengths or angles of chemical bonds, the elastic properties and density of the compound may vary continuously across the phase transition. In this case, it is often possible to describe the effect of the phase transition by adding an excess energy contribution to the energy of the undistorted phase. The changes in elastic properties that result from the phase transition can then be calculated from the excess energy and added to the finite‐strain contribution of the undistorted phase.

      Ferroelastic phase transitions are a common type of continuous phase transitions that can lead to substantial anomalies in elastic properties (Carpenter & Salje, 1998; Wadhawan, 1982). Upon cooling or compression across the transition point, a high‐symmetry phase spontaneously distorts into a phase of lower crystal symmetry. Along with the reduction in symmetry, the crystallographic unit cell changes shape, giving rise to spontaneous strains that describe the distortion of the low‐symmetry phase with respect to the high‐symmetry phase. Many minerals undergo ferroelastic distortions including the high‐pressure phases stishovite (Andrault et al., 1998; Carpenter et al., 2000; Karki et al., 1997b; Lakshtanov et al., 2007) and calcium silicate perovskite (Gréaux et al., 2019; Shim et al., 2002; Stixrude et al., 2007; Thomson et al., 2019). The excess energy associated with ferroelastic phase transitions can be described using a Landau expansion for the excess Gibbs free energy (Carpenter, 2006; Carpenter & Salje, 1998):

equation equation

      The first part of this expansion gives the energy contribution that arises from structural rearrangements which drive the phase transition. These rearrangements may be related to changes in the ordering of cations over crystallographic sites, in the vibrational structure, or in other properties of the atomic structure. The progress or extent of these rearrangements is captured by the order parameter Q. The last term gives the elastic energy associated with distorting the high‐symmetry phase with the elastic stiffness tensor images into the low‐symmetry phase according to the spontaneous strains eij. Coupling between the order parameter Q and the spontaneous strains eij is taken into account by the central term with coupling coefficients λij,m,n. The exact form and order of the coupling terms follow strict symmetry rules (Carpenter et al., 1998; Carpenter & Salje, 1998).

Скачать книгу