From Euclidean to Hilbert Spaces. Edoardo Provenzi

Чтение книги онлайн.

Читать онлайн книгу From Euclidean to Hilbert Spaces - Edoardo Provenzi страница 17

From Euclidean to Hilbert Spaces - Edoardo Provenzi

Скачать книгу

or pre-Hilbert spaces, of finite dimension n is the Euclidean space
n, where
= ℝ or
=
.

      Using the inner product, the concept of orthogonality between vectors can be extended to any inner product space. Two vectors are orthogonal if their inner product is null. The null vector is the only vector which is orthogonal to all other vectors, and the property of definite positiveness means that it is the only vector to be orthogonal to itself. If two vectors have the same inner product with all other vectors, that is, the same projection in every direction, then these vectors coincide.

      A norm on a vector space is said to be a Hilbert norm if an inner product can be defined which generates the norm in a canonical manner. Remarkably, a norm is a Hilbert norm if and only if it satisfies the parallelogram law; this holds true for both finite and infinite dimensions. The polarization law can be used to define an inner product which is compatible with a Hilbert norm.

      Vector orthogonality implies linear independence, guaranteeing that a set of n orthogonal vectors in a vector space of dimension n will constitute a basis. The expansion of a vector on an orthonormal basis is trivial: the components in relation to this basis are the inner products of the vector with the basis vectors. It is therefore much simpler to calculate components in such cases because, if the basis is not orthonormal, then a linear system of equations must be solved.

      Given an inner product space, of finite or infinite dimensions, an orthonormal basis can always be defined using the Gram-Schmidt orthonormalization algorithm.

      Finally, we proved the important Parseval identity and Plancherel’s theorem in relation to an orthonormal or orthogonal basis. The extension of these properties to infinite dimensions is presented in Chapter 5.

      1 1 i.e. is the abbreviation of the Latin expression “id est”, meaning “that is”. This term is often used in mathematical literature.

      2 2 The symbols z* and represent the complex conjugation, i.e. if z ∈ , z = a + ib, a, b ∈ ℝ, then z* = = a − ib. We recall that and z = if and only if ∈ ℝ.

      3 3 Sesqui comes from the Latin semisque, meaning one and a half times. This term is used to highlight the fact that there are not two instances of linearity, but one “and a half”, due to the presence of the complex conjugation.

      4 4 For the French mathematician Charles Hermite (1822, Dieuze-1901, Paris).

      5 5 Leopold Kronecker (1823, Liegnitz-1891, Berlin).

      6 6 Jørgen Pedersen Gram (1850, Nustrup-1916, Copenhagen), Erhard Schmidt (1876, Tatu-1959, Berlin).

      7 7 Marc-Antoine de Parseval des Chêsnes (1755, Rosières-aux-Salines-1836, Paris).

      8 8 Michel Plancherel (1885, Bussy-1967, Zurich).

      9 9 a.e.: almost everywhere (see Chapter 3).

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7SDcUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAC0cAVoAAxsl RxwCAAACAAAcAlAADFNhbWkgTWVuYXNjZRwCBQAITGF5b3V0IDEAOEJJTQQlAAAAAAAQbfnUixF7 0mrJoIOrCMPM3DhCSU0EOgAAAAAA5QAAABAAAAABAAAAAAALcHJpbnRPdXRwdXQAAAAFAAAAAFBz dFNib29sAQAAAABJbnRlZW51bQAAAABJbnRlAAAAAENscm0AAAAPcHJpbnRTaXh0ZWVuQml0Ym9v bAAAAAALcHJpbnRlck5hbWVURVhUAAAAAQAAAAAAD3ByaW50UHJvb2ZTZXR1cE9iamMAAAAMAFAA cgBvAG8AZgAgAFMAZQB0AHUAcAAAAAAACnByb29mU2V0dXAAAAABAAAAAEJsdG5lbnVtAAAADGJ1 aWx0aW5Qcm9vZgAAAAlwcm9vZkNNWUsAOEJJTQQ7AAAAAAItAAAAEAAAAAEAAAAAABJwcmludE91 dHB1dE9wdGlvbnMAAAAXAAAAAENwdG5ib29sAAAAAABDbGJyYm9vbAAAAAAAUmdzTWJvb2wAAAAA AENybkNib29sAAAAAABDbnRDYm9vbAAAAAAATGJsc2Jvb2wAAAAAAE5ndHZib29sAAAAAABFbWxE Ym9vbAAAAAAASW50cmJvb2wAAAAAAEJja2dPYmpjAAAAAQAAAAAAAFJHQkMAAAADAAAAAFJkICBk b3ViQG/gAAAAAAAAAAAAR3JuIGRvdWJAb+AAAAAAAAAAAABCbCAgZG91YkBv4AAAAAAAAAAAAEJy ZFRVbnRGI1JsdAAAAAAAAAAAAAAAAEJsZCBVbnRGI1JsdAAAAAAAAAAAAAAAAFJzbHRVbnRGI1B4 bEBywAAAAAAAAAAACnZlY3RvckRhdGFib29sAQAAAABQZ1BzZW51bQAAAABQZ1BzAAAAAFBnUEMA AAAATGVmdFVudEYjUmx0AAAAAAAAAAAAAAAAVG9wIFVudEYjUmx0AAAAAAAAAAAAAAAAU2NsIFVu dEYjUHJjQFkAAAAAAAAAAAAQY3JvcFdoZW5QcmludGluZ2Jvb2wAAAAADmNyb3BSZWN0Qm90dG9t bG9uZwAAAAAAAAAMY3JvcFJlY3RMZWZ0bG9uZwAAAAAAAAANY3JvcFJlY3RSaWdodGxvbmcAAAAA AAAAC2Nyb3BSZWN0VG9wbG9uZwAAAAAAOEJJTQPtAAAAAAAQASwAAAABAAEBLAAAAAEAAThCSU0E JgAAAAAADgAAAAAAAAAAAAA/gAAAOEJJTQQNAAAAAAAEAAAAWjhCSU0EGQAAAAAABAAAAB44QklN A/MAAAAAAAkAAAAAAAAAAAEAOEJJTScQAAAAAAAKAAEAAAAAAAAAAThCSU0D9QAAAAAASAAvZmYA AQBsZmYABgAAAAAAAQAvZmYAAQChmZoABgAAAAAAAQAyAAAAAQBaAAAABgAAAAAAAQA1AAAAAQAt AAAABgAAAAAAAThCSU0D+AAAAAAAcAAA/////////////////////////////wPoAAAAAP////// //////////////////////8D6AAAAAD/////////////////////////////A+gAAAAA//////// /////////////////////wPoAAA4QklNBAAAAAAAAAIAADhCSU0EAgAAAAAAAgAAOEJJTQQwAAAA AAABAQA4QklNBC0AAAAAAAYAAQAAAAI4QklNBAgAAAAAABAAAAABAAACQAAAAkAAAAAAOEJJTQQe AAAAAAAEAAAAADhCSU0EGgAAAAADTwAAAAYAAAAAAAAAAAAACxcAAAb4AAAADQA5ADcAOAAxADcA OAA2ADMAMAA2ADgAMgAxAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAb4AAALFwAA AAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAABAAAAABAAAAAAAAbnVsbAAAAAIAAAAG Ym91bmRz

Скачать книгу