Generalized Ordinary Differential Equations in Abstract Spaces and Applications. Группа авторов

Чтение книги онлайн.

Читать онлайн книгу Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов страница 19

Generalized Ordinary Differential Equations in Abstract Spaces and Applications - Группа авторов

Скачать книгу

tau 0 right-parenthesis minus f left-parenthesis a right-parenthesis parallel-to less-than-or-slanted-equals parallel-to f left-parenthesis tau 0 right-parenthesis minus f left-parenthesis tau 0 Superscript minus Baseline right-parenthesis parallel-to plus parallel-to f left-parenthesis tau 0 Superscript minus Baseline right-parenthesis minus f left-parenthesis a right-parenthesis parallel-to less-than-or-slanted-equals gamma Subscript tau 0 Baseline plus 1 plus upper K Subscript tau Baseline period"/>

      Hence, tau 0 element-of upper B.

      Let tau 0 less-than b. Since script í’œ is equiregulated, there exists delta double-prime greater-than 0 such that, for every f element-of script í’œ, parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis tau 0 Superscript plus Baseline right-parenthesis parallel-to less-than-or-slanted-equals 1, for all t element-of left-parenthesis tau 0 comma tau 0 plus delta Superscript double-prime Baseline right-bracket period Therefore, for every f element-of script í’œ, we have

StartLayout 1st Row 1st Column parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis a right-parenthesis parallel-to 2nd Column less-than-or-slanted-equals parallel-to f left-parenthesis t right-parenthesis minus f left-parenthesis tau 0 Superscript plus Baseline right-parenthesis parallel-to plus parallel-to f left-parenthesis tau 0 Superscript plus Baseline right-parenthesis minus f left-parenthesis tau 0 right-parenthesis parallel-to plus parallel-to f left-parenthesis tau 0 right-parenthesis minus f left-parenthesis a right-parenthesis parallel-to 2nd Row 1st Column Blank 2nd Column less-than-or-slanted-equals 1 plus gamma Subscript tau 0 Baseline plus upper K Subscript tau 0 Baseline equals upper K Subscript left-parenthesis tau 0 plus delta Sub Superscript double-prime Subscript right-parenthesis Baseline comma EndLayout

      for t element-of left-parenthesis tau 0 comma tau 0 plus delta double-prime right-bracket, where upper K Subscript tau 0 Baseline equals gamma Subscript tau 0 Baseline plus 1 plus upper K Subscript tau. Note that tau 0 plus delta double-prime element-of upper B which contradicts the fact that tau 0 equals sup upper B. Hence, tau 0 equals b and the statement follows.

      1.1.3 Uniform Convergence

      This subsection brings a few results borrowed from [177]. In particular, Lemma 1.13 describes an interesting and useful property of equiregulated converging sequences of Banach space‐valued functions and it is used later in the proof of a version of Arzelà–Ascoli theorem for Banach space‐valued regulated functions.

      Lemma 1.13: Let left-brace f Subscript k Baseline right-brace Subscript k element-of double-struck upper N be a sequence of functions from left-bracket a comma b right-bracket to upper X. If the sequence left-brace f Subscript k Baseline right-brace Subscript k element-of double-struck upper N converges pointwisely to f 0 and is equiregulated, then it converges uniformly to f 0.

      Proof. By hypothesis, the sequence of functions left-brace f Subscript k Baseline right-brace Subscript k element-of double-struck upper N is equiregulated. Then, Theorem 1.11 yields that, for every epsilon greater-than 0, there is a division d equals left-parenthesis t Subscript i Baseline right-parenthesis element-of upper D Subscript left-bracket a comma b right-bracket for which

parallel-to f Subscript k Baseline left-parenthesis t right-parenthesis minus f Subscript k Baseline left-parenthesis s right-parenthesis parallel-to less-than StartFraction epsilon Over 3 EndFraction comma

      for every k element-of double-struck upper N and t Subscript i minus 1 Baseline less-than s less-than t less-than t Subscript i, i equals 1 comma 2 comma ellipsis comma StartAbsoluteValue d EndAbsoluteValue.